A253476 Indices of centered triangular numbers (A005448) which are also centered heptagonal numbers (A069099).
1, 15, 70, 1596, 7645, 175491, 840826, 19302360, 92483161, 2123084055, 10172306830, 233519943636, 1118861268085, 25685070715851, 123064567182466, 2825124258799920, 13535983528803121, 310737983397275295, 1488835123601160790, 34178353049441482476
Offset: 1
Examples
15 is in the sequence because the 15th centered triangular number is 316, which is also the 10th centered heptagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..980
- Index entries for linear recurrences with constant coefficients, signature (1,110,-110,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,110,-110,-1,1},{1,15,70,1596,7645},30] (* Harvey P. Dale, Jun 14 2016 *)
-
PARI
Vec(x*(14*x^3+55*x^2-14*x-1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
Formula
a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(14*x^3+55*x^2-14*x-1) / ((x-1)*(x^4-110*x^2+1)).
Comments