cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253487 Number of lattice paths of 2*n+2 steps in the first quadrant from (0,0) to (n,n).

Original entry on oeis.org

2, 16, 90, 448, 2100, 9504, 42042, 183040, 787644, 3359200, 14226212, 59907456, 251100200, 1048380480, 4362680250, 18103127040, 74934688620, 309509877600, 1275964023180, 5251296336000, 21579247511640, 88555121603520, 362957071241700, 1485969577717248
Offset: 0

Views

Author

Robert Israel, Jan 02 2015

Keywords

Examples

			For n = 0 the a(0) = 2 paths of length 2 from (0,0) to (0,0) are (0,0)->(1,0)->(0,0) and (0,0)->(0,1)->(0,0).
		

Crossrefs

Cf. A110609.

Programs

  • Magma
    [(4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2): n in [0..25]]; // Vincenzo Librandi, Jan 09 2015
  • Maple
    seq((4*n+4)*(2*n+1)*binomial(2*n, n)/(n+2), n=0..30);
  • Mathematica
    Table[(4 n + 4) (2 n + 1) Binomial[2 n, n] / (n + 2), {n, 0, 25}] (* or *) CoefficientList[Series[1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)

Formula

a(n) = (4*n+4)*(2*n+1)*binomial(2*n, n)/(n+2).
a(n) = 2*(n+5)*(n+1)*a(n-1)/(n*(n+2)) + (8*n-4)*a(n-2)/(n+2).
G.f.: 1/x^2 - (1-6*x+4*x^2)/((1-4*x)^(3/2)*x^2).
E.g.f.: 16*x*exp(2*x)*I_0(2*x) + (2-4*x+16*x^2)*exp(2*x)*I_1(2*x)/x where I_0, I_1 are modified Bessel functions.
a(n) = 2*A110609(n+1). - Vincenzo Librandi, Jan 09 2015