cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253511 Number of n-bit binary strings in which the length of any run of ones is a power of two.

Original entry on oeis.org

1, 2, 4, 7, 14, 26, 49, 93, 176, 333, 630, 1192, 2255, 4267, 8073, 15274, 28900, 54679, 103455, 195741, 370348, 700713, 1325774, 2508412, 4746007, 8979617, 16989761, 32145244, 60819967, 115073582, 217723390, 411940547, 779406450, 1474665262, 2790120139
Offset: 0

Views

Author

Andrew Woods, Jan 02 2015

Keywords

Examples

			For n = 4, the a(4) = 14 solutions are 0000, 0001, 0010, 0100, 1000, 0101, 1001, 1010, 0011, 0110, 1100, 1011, 1101, and 1111.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1,
          a(n-1) +add(a(n-1-2^k), k=0..ilog2(n)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 03 2015
  • Mathematica
    terms = 35; h[x_] = Sum[x^2^k, {k, 0, Log[2, terms] // Floor}];
    CoefficientList[(1 + h[x])/(1 - x - x h[x]) + O[x]^terms, x] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)

Formula

a(n) = a(n-1) + Sum_{k>=0} a(n-(1+2^k)), with a(-1) = a(0) = 1 and a(n) = 0 for n < -1.
G.f.: (1 + h(x))/(1 - x - x*h(x)) where h(x) = sum(k >= 0, x^(2^k)) is the g.f. of A209229. - Robert Israel, Jan 04 2015