A253511 Number of n-bit binary strings in which the length of any run of ones is a power of two.
1, 2, 4, 7, 14, 26, 49, 93, 176, 333, 630, 1192, 2255, 4267, 8073, 15274, 28900, 54679, 103455, 195741, 370348, 700713, 1325774, 2508412, 4746007, 8979617, 16989761, 32145244, 60819967, 115073582, 217723390, 411940547, 779406450, 1474665262, 2790120139
Offset: 0
Keywords
Examples
For n = 4, the a(4) = 14 solutions are 0000, 0001, 0010, 0100, 1000, 0101, 1001, 1010, 0011, 0110, 1100, 1011, 1101, and 1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<1, 1, a(n-1) +add(a(n-1-2^k), k=0..ilog2(n))) end: seq(a(n), n=0..50); # Alois P. Heinz, Jan 03 2015
-
Mathematica
terms = 35; h[x_] = Sum[x^2^k, {k, 0, Log[2, terms] // Floor}]; CoefficientList[(1 + h[x])/(1 - x - x h[x]) + O[x]^terms, x] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
Formula
a(n) = a(n-1) + Sum_{k>=0} a(n-(1+2^k)), with a(-1) = a(0) = 1 and a(n) = 0 for n < -1.
G.f.: (1 + h(x))/(1 - x - x*h(x)) where h(x) = sum(k >= 0, x^(2^k)) is the g.f. of A209229. - Robert Israel, Jan 04 2015