cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 841, 755161, 678133681, 608963290321, 546848356574521, 491069215240629481, 440979608437728699361, 395999197307865131396641, 355606838202854450265484201, 319334544706965988473273415801, 286762065540017254794549261905041
Offset: 1

Views

Author

Colin Barker, Jan 03 2015

Keywords

Examples

			841 is in the sequence because it is the 16th centered heptagonal number and the 15th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-58*x+1)/((x-1)*(x^2-898*x+1)) + O(x^100))

Formula

a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
G.f.: -x*(x^2-58*x+1) / ((x-1)*(x^2-898*x+1)).
From Peter Bala, Apr 15 2025; (Start)
a(n) = (1/64)*(-4 + sqrt(14))^2*(15 + 4*sqrt(14) + (449 + 120*sqrt(14))^n)^2 *(449 + 120*sqrt(14))^(-n).
a(-n) = a(n+1).
a(n) = (1/16) * (1 - T(2*n+1, -15)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001110.
a(n) = A157877(n)^2 = 1 + 7*A157879(n).
a(2) divides a(3*n+2); a(3) divides a(5*n+3); a(4) divides a(7*n+4); a(5) divides a(9*n+5). In general, a(k) divides a((2*k-1)*n + k). (End)