cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253547 Total number of star-shaped dodecagons appearing in a variant of hexagon expansion after n iterations.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 16, 23, 33, 43, 56, 69, 85, 101, 120, 139, 161, 183, 208, 233, 261, 289, 320, 351, 385, 419, 456, 493, 533, 573, 616, 659, 705, 751, 800, 849, 901, 953, 1008, 1063, 1121, 1179, 1240, 1301, 1365, 1429, 1496, 1563, 1633, 1703, 1776, 1849, 1925, 2001, 2080
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 03 2015

Keywords

Comments

Total number of hexagons after n iterations is A179178. See illustration.

Crossrefs

Cf. A179178.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,0,0,1,3,9,16,23,33},60] (* Harvey P. Dale, Oct 30 2015 *)
  • PARI
    {
    a=1;d1=0;print1("0, 0, 0, 1",", ");
    for(n=4,100,
       if(n<5,d1=2,
         if(n<6,d1=6,
           if(n<7,d1=7,
             if(Mod(n,2)==0,d1=d1+3
             )
           )
         )
       );
       a=a+d1;
       print1(a,", ")
    )
    }

Formula

Conjectures from Colin Barker, Jan 03 2015: (Start)
a(n) = (27 - 3*(-1)^n - 28*n + 6*n^2)/8 for n>5.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>9.
G.f.: -x^4*(2*x^5 - 4*x^4 + 3*x^2 + x + 1) / ((x-1)^3*(x+1)). (End)