cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A336121 a(1) = 0, and for n > 1, a(n) = [A122111(n) == 3 (mod 4)] + a(A253553(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 0, 3, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 1, 2, 0, 1, 0, 1, 0, 1, 0, 3, 1, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 3, 0, 2, 0, 2, 0, 2, 0, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Comments

Positions for the first occurrence of each n, for n >= 0, are: 1, 4, 16, 32, 144, 512, 2048, 6912, 20736, 62208, ...

Crossrefs

Cf. A336119 (positions of zeros).

Programs

  • PARI
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A336121(n) = if(1==n,0,(3==A336124(n))+A336121(A253553(n)));

Formula

a(1) = 0, and for n > 1, a(n) = [A336124(n) == 3] + a(A253553(n)).
a(n) = A000120(A336120(n)).
a(n) = A292377(A122111(n)).
a(n) = A001222(n) - A336123(n).

A336123 a(1) = 0, a(2) = 1, and for n > 2, a(n) = [A122111(n) == 1 (mod 4)] + a(A253553(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ Uses also code given in A336124:
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A336123(n) = if(n<=2,n-1,(1==A336124(n))+A336123(A253553(n)));

Formula

a(1) = 0, a(2) = 1, and for n > 2, a(n) = [A336124(n) == 1] + a(A253553(n)).
a(n) = A000120(A336125(n)).
For n > 1, a(n) = A292375(A122111(n)).
a(n) = A001222(n) - A336121(n).
For all n >= 0, a(3^n) = n.

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A253550 Shift one instance of the largest prime one step towards larger primes: a(1) = 1, for n>1: a(n) = (n / prime(g)) * prime(g+1), where g = A061395(n), index of the greatest prime dividing n.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 15, 14, 13, 20, 17, 22, 21, 24, 19, 30, 23, 28, 33, 26, 29, 40, 35, 34, 45, 44, 31, 42, 37, 48, 39, 38, 55, 60, 41, 46, 51, 56, 43, 66, 47, 52, 63, 58, 53, 80, 77, 70, 57, 68, 59, 90, 65, 88, 69, 62, 61, 84, 67, 74, 99, 96, 85, 78, 71, 76, 87, 110, 73, 120, 79, 82, 105, 92, 91, 102, 83, 112, 135, 86, 89
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A252462.
Cf. A102750 (same terms, but with 2 instead of 1, sorted into ascending order).

Programs

Formula

a(1) = 1; for n>1: a(n) = A065091(A061395(n)) * A052126(n).
Other identities. For all n >= 1:
A252462(a(n)) = n. [A252462 works as an inverse function for this injection.]
a(n) <= A253560(n).

A329888 a(n) = A329900(A329602(n)); Heinz number of the even bisection (even-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 5, 2, 3, 2, 1, 3, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 7, 5, 3, 2, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 3, 8, 5, 3, 1, 2, 3, 5, 1, 6, 1, 2, 5, 2, 7, 3, 1, 4, 9, 2, 1, 6, 5, 2, 3, 4, 1, 6, 7, 2, 3, 2, 5, 8, 1, 7, 3, 10, 1, 3, 1, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

From Gus Wiseman, Aug 05 2021 and Antti Karttunen, Oct 13 2021: (Start)
Also the product of primes at even positions in the weakly decreasing list (with multiplicity) of prime factors of n. For example, the prime factors of 108 are (3,3,3,2,2), with even bisection (3,2), with product 6, so a(108) = 6.
Proof: A108951(n) gives a number with the same largest prime factor (A006530) and its exponent (A071178) as in n, and with each smaller prime p = 2, 3, 5, 7, ... < A006530(n) having as its exponent the partial sum of the exponents of all prime factors >= p present in n (with primes not present in n having the exponent 0). Then applying A000188 replaces each such "partial sum exponent" k with floor(k/2). Finally, A319626 replaces those halved exponents with their first differences (here the exponent of the largest prime present stays intact, because the next larger prime's exponent is 0 in n). It should be easy to see that if prime q is not present in n (i.e., does not divide it), then neither it is present in a(n). Moreover, if the partial sum exponent of q is odd and only one larger than the partial sum exponent of the next larger prime factor of n, then q will not be present in a(n), while in all other cases q is present in a(n). See also the last example.
(End)

Examples

			From _Gus Wiseman_, Aug 15 2021: (Start)
The list of all numbers with image 12 and their corresponding prime factors begins:
  144: (3,3,2,2,2,2)
  216: (3,3,3,2,2,2)
  240: (5,3,2,2,2,2)
  288: (3,3,2,2,2,2,2)
  336: (7,3,2,2,2,2)
  360: (5,3,3,2,2,2)
(End)
The positions from the left are indexed as 1, 2, 3, ..., etc, so e.g., for 240 we pick the second, the fourth and the sixth prime factor, 3, 2 and 2, to obtain a(240) = 3*2*2 = 12. For 288, we similarly pick the second (3), the fourth (2) and the sixth (2) to obtain a(288) = 3*2*2 = 12. - _Antti Karttunen_, Oct 13 2021
Consider n = 11945934 = 2*3*3*3*7*11*13*13*17. Its primorial inflation is A108951(11945934) = 96478365991115908800000 = 2^9 * 3^8 * 5^5 * 7^5 * 11^4 * 13^3 * 17^1. Applying A000188 to this halves each exponent (floored down if the exponent is odd), leaving the factors 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 = 2497294800. Then applying A319626 to this number retains the largest prime factor (and its exponent), and subtracts from the exponent of each of the rest of primes the exponent of the next larger prime, so from 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 we get 2^(4-4) * 3^(4-2) * 5^(2-2) * 7^(2-2) * 11^(2-1) * 13^1 = 3^2 * 11^1 * 13^1 = 1287 = a(11945934), which is obtained also by selecting every second prime from the list [17, 13, 13, 11, 7, 3, 3, 3, 2] and taking their product. - _Antti Karttunen_, Oct 15 2021
		

Crossrefs

A left inverse of A000290.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346700(n).
The odd version is A346701.
The odd non-reverse version is A346703.
The non-reverse version is A346704.
The version for standard compositions is A346705, odd A346702.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A001414 adds up prime factors, row sums of A027746.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A346633 adds up the even bisection of standard compositions.
A346698 adds up the even bisection of prime indices.

Programs

  • Mathematica
    Table[Times@@Last/@Partition[Reverse[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]],2],{n,100}] (* Gus Wiseman, Oct 13 2021 *)
  • PARI
    A329888(n) = A329900(A329602(n));
    
  • PARI
    A329888(n) = if(1==n,n,my(f=factor(n),m=1,p=0); forstep(k=#f~,1,-1,while(f[k,2], m *= f[k,1]^(p%2); f[k,2]--; p++)); (m)); \\ (After Wiseman's new interpretation) - Antti Karttunen, Sep 21 2021

Formula

A108951(a(n)) = A329602(n).
a(n^2) = n for all n >= 1.
a(n) * A346701(n) = n. - Gus Wiseman, Aug 07 2021
A056239(a(n)) = A346700(n). - Gus Wiseman, Aug 07 2021
Antti Karttunen, Sep 21 2021
From Antti Karttunen, Oct 13 2021: (Start)
For all x in A102750, a(x) = a(A253553(x)). (End)

Extensions

Name amended with Gus Wiseman's new interpretation - Antti Karttunen, Oct 13 2021

A336120 a(n) = A292383(A122111(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 0, 4, 0, 4, 0, 8, 0, 5, 0, 5, 0, 8, 0, 16, 0, 10, 1, 32, 0, 16, 0, 10, 0, 11, 0, 64, 2, 8, 0, 128, 0, 20, 0, 20, 0, 32, 0, 256, 0, 22, 0, 8, 0, 64, 0, 11, 4, 40, 0, 512, 0, 16, 0, 1024, 0, 22, 8, 40, 0, 128, 0, 16, 0, 20, 0, 2048, 1, 256, 0, 80, 0, 44, 0, 4096, 0, 32, 16, 8192, 0, 80, 0, 22, 0, 512, 0, 16384, 32, 44, 0, 17, 0, 17, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 14 2020

Keywords

Crossrefs

Programs

  • PARI
    \\ Uses also code given in A336124:
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A336120(n) = if(1==n,0,(3==A336124(n))+(2*A336120(A253553(n))));

Formula

a(1) = 0, and for n > 1, a(n) = [A122111(n) == 3 (mod 4)] + 2*a(A253553(n)).
a(n) = A292383(A122111(n)).
a(n) = A253566(n) - A336125(n).
A000120(a(n)) = A336121(n).

A336125 a(n) = A292385(A122111(n)).

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 8, 5, 5, 8, 16, 10, 32, 16, 10, 10, 64, 8, 128, 20, 20, 32, 256, 20, 8, 64, 11, 40, 512, 16, 1024, 20, 40, 128, 16, 21, 2048, 256, 80, 40, 4096, 32, 8192, 80, 22, 512, 16384, 40, 17, 17, 160, 160, 32768, 16, 32, 80, 320, 1024, 65536, 42, 131072, 2048, 44, 41, 64, 64, 262144, 320, 640, 34, 524288, 41, 1048576, 4096, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Crossrefs

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 2, a(n) = [A122111(n) == 1 (mod 4)] + 2*a(A253553(n)).
a(n) = A292385(A122111(n)).
a(n) = A253566(n) - A336120(n).
A000120(a(n)) = A336123(n).

A336312 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A336120(i)) = A278222(A336120(j)) for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 4, 1, 2, 1, 2, 2, 2, 1, 3, 1, 4, 1, 2, 1, 2, 2, 4, 1, 3, 1, 3, 1, 3, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Comments

Restricted growth sequence transform of A278222(A336120(n)).
For all i, j:
a(i) = a(j) => A336121(i) = A336121(j) => A335909(i) = A335909(j).

Crossrefs

Cf. A336119 (positions of ones).

Programs

  • PARI
    up_to = 1024; \\ 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    \\ Needs also code from A336124:
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A336120(n) = if(1==n,0,(3==A336124(n))+(2*A336120(A253553(n))));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v336312 = rgs_transform(vector(up_to,n,A278222(A336120(n))));
    A336312(n) = v336312[n];

A356300 Square array read by antidiagonals. A(n,k) is the nearest common ancestor of n and k in the binary tree depicted in A253563.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 4, 7, 4, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 03 2022

Keywords

Comments

Array is symmetric and is read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... .
Also the nearest common ancestor of n and k in the tree depicted in A253565 (the mirror image of the A253563-tree).

Examples

			The top left 21x21 corner of the array:
n/k  |  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21
-----+----------------------------------------------------------------------------
   1 |  1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
   2 |  1, 2, 2, 2, 2, 2, 2, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
   3 |  1, 2, 3, 2, 3, 2, 3, 2, 3,  2,  3,  2,  3,  2,  3,  2,  3,  2,  3,  2,  3,
   4 |  1, 2, 2, 4, 2, 4, 2, 4, 2,  4,  2,  4,  2,  4,  2,  4,  2,  4,  2,  4,  2,
   5 |  1, 2, 3, 2, 5, 2, 5, 2, 3,  2,  5,  2,  5,  2,  3,  2,  5,  2,  5,  2,  3,
   6 |  1, 2, 2, 4, 2, 6, 2, 4, 2,  6,  2,  4,  2,  6,  2,  4,  2,  6,  2,  4,  2,
   7 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2,  7,  2,  7,  2,  3,  2,  7,  2,  7,  2,  3,
   8 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2,  8,  2,  4,  2,  8,  2,  4,  2,  8,  2,
   9 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2,  9,  2,  3,  2,  3,  2,  9,
  10 |  1, 2, 2, 4, 2, 6, 2, 4, 2, 10,  2,  4,  2, 10,  2,  4,  2,  6,  2,  4,  2,
  11 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 11,  2,  3,  2, 11,  2, 11,  2,  3,
  12 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2, 12,  2,  4,  2,  8,  2,  4,  2, 12,  2,
  13 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 13,  2, 13,  2,  3,
  14 |  1, 2, 2, 4, 2, 6, 2, 4, 2, 10,  2,  4,  2, 14,  2,  4,  2,  6,  2,  4,  2,
  15 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2, 15,  2,  3,  2,  3,  2, 15,
  16 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2,  8,  2,  4,  2, 16,  2,  4,  2,  8,  2,
  17 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 17,  2, 17,  2,  3,
  18 |  1, 2, 2, 4, 2, 6, 2, 4, 2,  6,  2,  4,  2,  6,  2,  4,  2, 18,  2,  4,  2,
  19 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 17,  2, 19,  2,  3,
  20 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2, 12,  2,  4,  2,  8,  2,  4,  2, 20,  2,
  21 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2, 15,  2,  3,  2,  3,  2, 21,
.
A(3,6) = A(6,3) = 2 because the nearest common ancestor of 3 and 6 in the tree described in A253563 (and in A253565) is 2.
A(4,6) = A(6,4) = 4 because 6 occurs as a descendant of 4 in A253563-tree, thus their nearest common ancestor is 4 itself.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A356300sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, stemlen, h=y); while(k>1, listput(lista,k); k = A253553(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A253553(h)));
    A356300list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A356300sq(col,(a-(col-1))))); (v); };
    v356300 = A356300list(up_to);
    A356300(n) = v356300[n];

A356306 The nearest common ancestor of A000265(n) and gcd(A000265(n), sigma(n)) in the A253563-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 9, 7, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 03 2022

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A161942(n) = A000265(sigma(n));
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A356300sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, stemlen, h=y); while(k>1, listput(lista,k); k = A253553(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A253553(h)));
    A356306(n) = A356300sq(A000265(n), gcd(n, A161942(n)));

Formula

a(n) = A356300(A000265(n), A355931(n)).
Showing 1-10 of 14 results. Next