cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A253565 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 8, 7, 25, 15, 27, 10, 18, 12, 16, 11, 49, 35, 125, 21, 75, 45, 81, 14, 50, 30, 54, 20, 36, 24, 32, 13, 121, 77, 343, 55, 245, 175, 625, 33, 147, 105, 375, 63, 225, 135, 243, 22, 98, 70, 250, 42, 150, 90, 162, 28, 100, 60, 108, 40, 72, 48, 64, 17, 169, 143, 1331, 91, 847, 539, 2401, 65, 605, 385, 1715, 275, 1225, 875, 3125, 39
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253550 to the parent, and each child to the right is obtained by applying A253560 to the parent:
1
|
...................2...................
3 4
5......../ \........9 6......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 25 15 27 10 18 12 16
11 49 35 125 21 75 45 81 14 50 30 54 20 36 24 32
etc.
Sequence A253563 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always smaller than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
The term a(n) is the Heinz number of the adjusted partial sums of the n-th composition in standard order, where (1) the k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again, (2) the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and (3) we define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts. See formula for a simplification. A triangular form is A242628. The inverse is A253566. The non-adjusted version is A358170. - Gus Wiseman, Dec 17 2022

Examples

			From _Gus Wiseman_, Dec 23 2022: (Start)
This represents the following bijection between compositions and partitions. The n-th composition in standard order together with the reversed prime indices of a(n) are:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (2)
   3:     (1,1) -> (1,1)
   4:       (3) -> (3)
   5:     (2,1) -> (2,2)
   6:     (1,2) -> (2,1)
   7:   (1,1,1) -> (1,1,1)
   8:       (4) -> (4)
   9:     (3,1) -> (3,3)
  10:     (2,2) -> (3,2)
  11:   (2,1,1) -> (2,2,2)
  12:     (1,3) -> (3,1)
  13:   (1,2,1) -> (2,2,1)
  14:   (1,1,2) -> (2,1,1)
  15: (1,1,1,1) -> (1,1,1,1)
(End)
		

Crossrefs

Inverse: A253566.
Cf. A252737 (row sums), A252738 (row products).
Applying A001222 gives A000120.
A reverse version is A005940.
These are the Heinz numbers of the rows of A242628.
Sum of prime indices of a(n) is A359043, reverse A161511.
A048793 gives partial sums of reversed standard comps, Heinz number A019565.
A066099 lists standard compositions.
A112798 list prime indices, sum A056239.
A358134 gives partial sums of standard compositions, Heinz number A358170.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Times@@Prime/@#&/@Table[Accumulate[stc[n]-1]+1,{n,0,60}] (* Gus Wiseman, Dec 17 2022 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).
As a composition of related permutations:
a(n) = A122111(A163511(n)).
a(n) = A253563(A054429(n)).
Other identities and observations. For all n >= 0:
a(2n+1) - a(2n) > 0. [See the comment above.]
If n = 2^(x_1)+...+2^(x_k) then a(n) = Product_{i=1..k} prime(x_k-x_{i-1}-k+i) where x_0 = 0. - Gus Wiseman, Dec 23 2022

A253563 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 9, 5, 16, 12, 18, 10, 27, 15, 25, 7, 32, 24, 36, 20, 54, 30, 50, 14, 81, 45, 75, 21, 125, 35, 49, 11, 64, 48, 72, 40, 108, 60, 100, 28, 162, 90, 150, 42, 250, 70, 98, 22, 243, 135, 225, 63, 375, 105, 147, 33, 625, 175, 245, 55, 343, 77, 121, 13, 128, 96, 144, 80, 216, 120, 200, 56, 324, 180, 300, 84, 500, 140, 196, 44
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253560 to the parent, and each child to the right is obtained by applying A253550 to the parent:
1
|
...................2...................
4 3
8......../ \........6 9......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 12 18 10 27 15 25 7
32 24 36 20 54 30 50 14 81 45 75 21 125 35 49 11
etc.
Sequence A253565 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) tells distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always larger than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
a(n) (n>=1) can be obtained by the composition of a bijection between {1,2,3,4,...} and the set of integer partitions and a bijection between the set of integer partitions and {2,3,4,...}. Explanation on the example n=10. Write 2*n = 20 as a binary number: 10100. Consider a Ferrers board whose southeast border is obtained by replacing each 1 by an east step and each 0 by a north step. We obtain the Ferrers board of the partition p = (2,2,1). Finally, a(10) = 2'*2'*1', where m' = m-th prime. Thus, a(10)= 3*3*2 = 18. - Emeric Deutsch, Sep 17 2016

Crossrefs

Inverse: A253564.
Cf. A252737 (row sums), A252738 (row products).

Programs

  • Maple
    a:= proc(n) local m; m:= n; [0]; while m>0 do `if`(1=
          irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od:
          `if`(n=0, 1, mul(ithprime(i), i=%))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 23 2017
  • Mathematica
    p[n_] := p[n] = FactorInteger[n][[-1, 1]];
    b[n_] := n p[n];
    c[1] = 1; c[n_] := (n/p[n]) NextPrime[p[n]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], c[a[(n-1)/2]]];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 15 2021 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).
As a composition of other permutations:
a(n) = A122111(A005940(n+1)).
a(n) = A253565(A054429(n)).
Other identities and observations. For all n >= 0:
A002110(n) = a(A002450(n)). [Primorials occur at positions (4^n - 1)/3.]
For all n >= 1: a(2n) - a(2n+1) > 0. [See the comment above.]

A253560 Multiply n by its largest prime factor: a(n) = A006530(n) * n.

Original entry on oeis.org

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]

A253553 a(1) = 1; for n>1, if A241917(n) = 0 [i.e., n is a term of A070003], a(n) = A052126(n), otherwise a(n) = A252462(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 4, 3, 6, 7, 8, 11, 10, 9, 8, 13, 6, 17, 12, 15, 14, 19, 16, 5, 22, 9, 20, 23, 18, 29, 16, 21, 26, 25, 12, 31, 34, 33, 24, 37, 30, 41, 28, 27, 38, 43, 32, 7, 10, 39, 44, 47, 18, 35, 40, 51, 46, 53, 36, 59, 58, 45, 32, 55, 42, 61, 52, 57, 50, 67, 24, 71, 62, 15, 68, 49, 66, 73, 48, 27
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

If the exponent of the largest prime dividing n is larger than one, subtract one from that exponent. Otherwise, shift that "lonely largest prime" one step towards smaller primes.
For any number n >= 2 in binary trees A253563 and A253565, a(n) gives the number which is the parent of n.

Crossrefs

Cf. A252464 (the number of iterations of n -> a(n) needed to reach 1 from n.)

Programs

  • PARI
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f)); \\ Antti Karttunen, Jul 17 2020
    
  • Scheme
    (define (A253553 n) (cond ((<= n 1) n) ((zero? (A241917 n)) (A052126 n)) (else (A252462 n))))

Formula

a(1) = 1; for n>1, if A241917(n) = 0 [i.e., n is a term of A070003], a(n) = A052126(n), otherwise a(n) = A252462(n).
a(n) = A122111(A252463(A122111(n))). - Antti Karttunen, Jul 14 2020

A336321 a(n) = A122111(A225546(n)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A122111 and A225546 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A122111 maps the k-th prime to 2^k, whereas A225546 maps it to 2^2^(k-1).
In composing these permutations, this sequence maps the squarefree numbers, as listed in A019565, to the prime numbers in increasing order; and the list of powers of 2 to the "normal" numbers (A055932), as listed in A057335.

Examples

			From _Peter Munn_, Jan 04 2021: (Start)
In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.).
First, a table showing mapping of the powers of 2:
  n     a^-1(2^n) =    2^n =        a(2^n) =
        A001146(n-1)   A000079(n)   A057335(n)
  0             (1)         1            1
  1               2         2            2
  2               4         4            4
  3              16         8            6
  4             256        16            8
  5           65536        32           12
  6      4294967296        64           18
  ...
Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors):
  n   a^-1(A019565(n))   A019565(n)      a(A019565(n))   a^2(A019565(n))
      Cf. {A337533}      Cf. {A005117}   = prime(n)      = A033844(n-1)
  0              1               1             (1)               (1)
  1              2               2               2                 2
  2              3               3               3                 3
  3              8               6               5                 7
  4              6               5               7                19
  5             12              10              11                53
  6             18              15              13               131
  7            128              30              17               311
  8              5               7              19               719
  9             24              14              23              1619
  ...
As sets, the above columns are A337533, A005117, A008578, {1} U A033844.
Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207.
(End)
		

Crossrefs

A122111 composed with A225546.
Cf. A336322 (inverse permutation).
Other sequences used in a definition of this sequence: A000040, A000188, A019565, A248663, A253550, A253560.
Sequences used to express relationship between terms of this sequence: A003159, A003961, A297002, A334747.
Cf. A057335.
A mapping between the binary tree sequences A334866 and A253563.
Lists of sets (S_1, S_2, ... S_j) related by the bijection defined by the sequence: (A000290\{0}, {1} U A070003), ({1} U A001146, A000079, A055932), ({1} U A335740, A005408, A066207), (A337533, A005117, A008578, {1} U A033844).

Formula

a(n) = A122111(A225546(n)).
Alternative definition: (Start)
Write n = m^2 * A019565(j), where m = A000188(n), j = A248663(n).
a(1) = 1; otherwise for m = 1, a(n) = A000040(j), for m > 1, a(n) = A253550^j(A253560(a(m))).
(End)
a(A000040(m)) = A033844(m-1).
a(A001146(m)) = 2^(m+1).
a(2^n) = A057335(n).
a(n^2) = A253560(a(n)).
For n in A003159, a(2n) = b(a(n)), where b(1) = 2, b(n) = A253550(n), n >= 2.
More generally, a(A334747(n)) = b(a(n)).
a(A003961(n)) = A297002(a(n)).
a(A334866(m)) = A253563(m).

A350066 Symmetric square array A(n,k) = A122111(A122111(n) * A122111(k)), n >= 1, k >= 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 6, 7, 6, 5, 6, 7, 10, 10, 7, 6, 7, 10, 11, 9, 11, 10, 7, 8, 11, 14, 14, 14, 14, 11, 8, 9, 12, 13, 15, 13, 15, 13, 12, 9, 10, 15, 20, 22, 22, 22, 22, 20, 15, 10, 11, 14, 21, 18, 17, 21, 17, 18, 21, 14, 11, 12, 13, 22, 25, 28, 26, 26, 28, 25, 22, 13, 12, 13, 20, 17, 21, 33, 30, 19, 30, 33, 21, 17, 20, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2021

Keywords

Comments

A122111 is a self-inverse permutation, so this array represents a binary operation A(.,.) over the positive integers that is isomorphic to multiplication. Its primes are the positive powers of 2 (as defined by standard multiplication): 2, 4, 8, 16, 32, ... . The positive powers of 2, as defined by A(.,.), are the prime numbers as we usually understand them: 2, 3, 5, 7, 11, ... . - Peter Munn, Aug 04 2022

Examples

			The top left 15 X 15 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,  12, 13, 14,  15,
   2,  3,  5,  6,  7, 10, 11, 12, 15, 14, 13,  20, 17, 22,  21,
   3,  5,  7, 10, 11, 14, 13, 20, 21, 22, 17,  28, 19, 26,  33,
   4,  6, 10,  9, 14, 15, 22, 18, 25, 21, 26,  30, 34, 33,  35,
   5,  7, 11, 14, 13, 22, 17, 28, 33, 26, 19,  44, 23, 34,  39,
   6, 10, 14, 15, 22, 21, 26, 30, 35, 33, 34,  42, 38, 39,  55,
   7, 11, 13, 22, 17, 26, 19, 44, 39, 34, 23,  52, 29, 38,  51,
   8, 12, 20, 18, 28, 30, 44, 27, 50, 42, 52,  45, 68, 66,  70,
   9, 15, 21, 25, 33, 35, 39, 50, 49, 55, 51,  70, 57, 65,  77,
  10, 14, 22, 21, 26, 33, 34, 42, 55, 39, 38,  66, 46, 51,  65,
  11, 13, 17, 26, 19, 34, 23, 52, 51, 38, 29,  68, 31, 46,  57,
  12, 20, 28, 30, 44, 42, 52, 45, 70, 66, 68,  63, 76, 78, 110,
  13, 17, 19, 34, 23, 38, 29, 68, 57, 46, 31,  76, 37, 58,  69,
  14, 22, 26, 33, 34, 39, 38, 66, 65, 51, 46,  78, 58, 57,  85,
  15, 21, 33, 35, 39, 55, 51, 70, 77, 65, 57, 110, 69, 85,  91,
		

Crossrefs

Cf. A122111, A297002 (main diagonal), A253550 (after its initial term, gives row 2 / column 2 from the second term onward).
See the formula section for the relationships with A003961, A061142.
Cf. also A003991, A129595, A331590.

Programs

  • PARI
    up_to = 105;
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A350066sq(n,k) = A122111(A122111(n)*A122111(k));
    A350066list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A350066sq(col,(a-(col-1))))); (v); };
    v350066 = A350066list(up_to);
    A350066(n) = v350066[n]; \\ Antti Karttunen, Dec 13 2021

Formula

A(n, A061142(n)) = A003961(n). - Peter Munn, Aug 04 2022

A369028 Exponential of Mangoldt function permuted by A253563.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 3, 5, 2, 1, 1, 1, 3, 1, 5, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 7, 11, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 13, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253563 (when viewed as an offset-1 sequence), because A253563 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253563(n)).
a(1) = 0, and for n > 0, a(n) = lcm {1..A253563(n)} / lcm {1..A253563(n-1)}. [See comments]

A369029 Exponential of Mangoldt function permuted by A253565.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 1, 2, 7, 5, 1, 3, 1, 1, 1, 2, 11, 7, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 13, 11, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 17, 13, 1, 11, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253565(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments]

A277332 a(n) = A253565(A003714(n)).

Original entry on oeis.org

1, 2, 3, 5, 9, 7, 25, 15, 11, 49, 35, 21, 75, 13, 121, 77, 55, 245, 33, 147, 105, 17, 169, 143, 91, 847, 65, 605, 385, 39, 363, 231, 165, 735, 19, 289, 221, 187, 1859, 119, 1183, 1001, 85, 845, 715, 455, 4235, 51, 507, 429, 273, 2541, 195, 1815, 1155, 23, 361, 323, 247, 3757, 209, 3179, 2431, 133, 2023, 1547, 1309, 13013, 95
Offset: 0

Views

Author

Antti Karttunen, Oct 12 2016

Keywords

Comments

After the initial terms 1, 2 and 3, all other terms can be inductively generated by applying any finite composition-combination of A253560 and A253550 to 3, but with such a restriction that A253560 may not be applied twice in succession.
A permutation of A277334.
Note how A253565(A022340(n)) = A253565(2*A003714(n)) yields a permutation of A056911, odd squarefree numbers.

Examples

			55 = A253550(A253550(A253560(A253550(3)))), 55 is in this sequence.
		

Crossrefs

Cf. A277334 (same sequence sorted into ascending order).
Cf. also A056911, A277006, A277331.

Programs

Formula

a(n) = A253565(A003714(n)).

A064802 a(n) = Min { m > n | prime factorizations of m and n differ in one factor only}, a(1) = 1.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 15, 14, 13, 18, 17, 21, 21, 24, 19, 27, 23, 28, 33, 26, 29, 36, 35, 34, 45, 42, 31, 42, 37, 48, 39, 38, 49, 54, 41, 46, 51, 56, 43, 63, 47, 52, 63, 58, 53, 72, 77, 70, 57, 68, 59, 81, 65, 84, 69, 62, 61, 84, 67, 74, 99, 96, 85, 78, 71, 76, 87, 98, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2001

Keywords

Comments

a(A000040(k)) = A000040(k + 1).
A094457 gives next smaller comparable number, replacing the prime factor 2 with 1. - Michael De Vlieger, Jan 31 2015
From Peter Munn, Oct 13 2023: (Start)
For n > 1, a(n) is the smallest number m > n in the factorization neighborhood of n given by A127185(m, n) <= 2.
Usually, the minimum m is achieved by replacing the largest prime factor with the next prime. So through the first 60 terms about 1 term in 5 differs from the corresponding term of A253550, but this proportion drops to 611 of the first 10000 terms. Nevertheless, I see reasons (deriving from the distribution of the lengths of prime gaps) to doubt that the asymptotic density of {n : a(n) <> A253550(n)} is less than 611/10000.
(End)

Examples

			n = 20 = 2 * 2 * 5: as 2 * 3 * 5 > 2 * 2 * 7 = 28 we have a(20) = 28.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g}, g[x_] := Flatten[Table[#1, {#2}] & @@@ FactorInteger@ x]; If[n == 1, 1, Min[Times @@ MapAt[NextPrime, g[n], #] & /@ Range[Length@ g[n]]]]]; Array[f, 71] (* Michael De Vlieger, Jan 31 2015 *)
Showing 1-10 of 14 results. Next