A253605 Primes p such that the polynomial x^2 + x + p generates only primes for x=1..13.
17, 41, 27649987598537, 30431463129071, 58326356511581, 161966446726157, 291598227841757
Offset: 1
Programs
-
PARI
isok(p) = {for (n=1, 13, if (! isprime(subst(x^2+x+p, x, n)), return (0));); 1;} \\ Michel Marcus, Jan 13 2015
-
Perl
use ntheory qw(:all); local $| = 1; my $lo = 2; my $hi = 2*$lo; while (1) { print "$, " for sieve_prime_cluster($lo, $hi, map { $*($+1) } 1..13); $lo = $hi+1; $hi = 2*$lo } # _Daniel Suteu, Dec 22 2024
Extensions
a(5)-a(7) from Daniel Suteu, Dec 22 2024