A253608 The binary representation of a(n) is the concatenation of n and the binary complement of n, A035327(n).
2, 9, 12, 35, 42, 49, 56, 135, 150, 165, 180, 195, 210, 225, 240, 527, 558, 589, 620, 651, 682, 713, 744, 775, 806, 837, 868, 899, 930, 961, 992, 2079, 2142, 2205, 2268, 2331, 2394, 2457, 2520, 2583, 2646, 2709, 2772, 2835, 2898, 2961, 3024, 3087, 3150, 3213
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> (n+1)*(2^(ilog2(n)+1)-1): seq(a(n), n=1..50); # Alois P. Heinz, Jan 08 2015
-
Mathematica
Array[(# + 1) (2^(Floor@ Log2[#] + 1) - 1) &, 50] (* Michael De Vlieger, Oct 13 2018 *)
-
PARI
a(n) = (n+1)*(2^#binary(n)-1); \\ Michel Marcus, Jan 08 2015
-
Python
for n in range(1,333): print(str((n+1)*(2 ** int.bit_length(int(n))-1)), end=',')
Formula
a(n) = (n+1) * (2^BL(n) - 1), where BL(n) is the binary length of n.