cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253608 The binary representation of a(n) is the concatenation of n and the binary complement of n, A035327(n).

Original entry on oeis.org

2, 9, 12, 35, 42, 49, 56, 135, 150, 165, 180, 195, 210, 225, 240, 527, 558, 589, 620, 651, 682, 713, 744, 775, 806, 837, 868, 899, 930, 961, 992, 2079, 2142, 2205, 2268, 2331, 2394, 2457, 2520, 2583, 2646, 2709, 2772, 2835, 2898, 2961, 3024, 3087, 3150, 3213
Offset: 1

Views

Author

Alex Ratushnyak, Jan 05 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (n+1)*(2^(ilog2(n)+1)-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 08 2015
  • Mathematica
    Array[(# + 1) (2^(Floor@ Log2[#] + 1) - 1) &, 50] (* Michael De Vlieger, Oct 13 2018 *)
  • PARI
    a(n) = (n+1)*(2^#binary(n)-1); \\ Michel Marcus, Jan 08 2015
  • Python
    for n in range(1,333):
      print(str((n+1)*(2 ** int.bit_length(int(n))-1)), end=',')
    

Formula

a(n) = (n+1) * (2^BL(n) - 1), where BL(n) is the binary length of n.