cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253624 Initial members of prime sextuples (p, p+2, p+12, p+14, p+24, p+26).

Original entry on oeis.org

5, 17, 1277, 4217, 21587, 91127, 103967, 113147, 122027, 236867, 342047, 422087, 524957, 560477, 626597, 754967, 797567, 909317, 997097, 1322147, 1493717, 1698857, 1748027, 1762907, 2144477, 2158577, 2228507, 2398157, 2580647, 2615957
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 06 2015

Keywords

Comments

This sequence is primes p for which there exist three twin prime pairs (p, p+2), (p+12, p+14) and (p+24, p+26).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30n+17). A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).
Note that not in all cases (p, p+2, p+12, p+14, p+24, p+26) are consecutive primes; the first p's for which (p, p+2, p+12, p+14, p+24, p+26) are consecutive primes are 4217, 21587, 91127, 103967, 236867, 342047, 422087, 560477, 797567, 909317, 1322147, 1493717, 1748027, 1762907, 2144477, 2158577, 2228507, 2615957 (not in OEIS). - Zak Seidov, May 16 2017

Examples

			For p = 17, the numbers 17, 19, 29, 31, 41, 43 are primes.
		

Crossrefs

Cf. A077800 (twin primes), A128468, A039949, A181605.

Programs

  • Maple
    select(t -> andmap(isprime, [t,t+2,t+12,t+14,t+24,t+26]),
    [5, seq(30*k+17,k=0..10^5)]); # Robert Israel, Jan 07 2015
  • Mathematica
    Select[Prime@ Range[2*10^5], Times @@ Boole@ PrimeQ[# + {2, 12, 14, 24, 26}] == 1 &] (* Michael De Vlieger, May 16 2017 *)
    Select[Prime[Range[200000]],AllTrue[#+{2,12,14,24,26},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 15 2021 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+12) and isprime(n+14) and isprime(n+24) and isprime(n+26): print(n,end=', ')
    
  • Python
    from sympy import isprime, primerange
    def aupto(limit):
      alst = []
      for p in primerange(2, limit+1):
        if all(map(isprime, [p+2, p+12, p+14, p+24, p+26])): alst.append(p)
      return alst
    print(aupto(3*10**6)) # Michael S. Branicky, May 17 2021