A253624 Initial members of prime sextuples (p, p+2, p+12, p+14, p+24, p+26).
5, 17, 1277, 4217, 21587, 91127, 103967, 113147, 122027, 236867, 342047, 422087, 524957, 560477, 626597, 754967, 797567, 909317, 997097, 1322147, 1493717, 1698857, 1748027, 1762907, 2144477, 2158577, 2228507, 2398157, 2580647, 2615957
Offset: 1
Keywords
Examples
For p = 17, the numbers 17, 19, 29, 31, 41, 43 are primes.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
- Wikipedia, Twin prime
Programs
-
Maple
select(t -> andmap(isprime, [t,t+2,t+12,t+14,t+24,t+26]), [5, seq(30*k+17,k=0..10^5)]); # Robert Israel, Jan 07 2015
-
Mathematica
Select[Prime@ Range[2*10^5], Times @@ Boole@ PrimeQ[# + {2, 12, 14, 24, 26}] == 1 &] (* Michael De Vlieger, May 16 2017 *) Select[Prime[Range[200000]],AllTrue[#+{2,12,14,24,26},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 15 2021 *)
-
Python
from sympy import isprime for n in range(1,10000001,2): if isprime(n) and isprime(n+2) and isprime(n+12) and isprime(n+14) and isprime(n+24) and isprime(n+26): print(n,end=', ')
-
Python
from sympy import isprime, primerange def aupto(limit): alst = [] for p in primerange(2, limit+1): if all(map(isprime, [p+2, p+12, p+14, p+24, p+26])): alst.append(p) return alst print(aupto(3*10**6)) # Michael S. Branicky, May 17 2021
Comments