A253651 Triangular numbers that are the product of a triangular number and a prime number.
0, 3, 6, 15, 21, 45, 66, 78, 105, 190, 210, 231, 435, 465, 630, 861, 903, 1035, 1326, 2415, 2556, 2628, 3003, 3570, 4005, 4950, 5460, 5565, 5995, 7140, 8646, 8778, 9870, 12246, 16471, 16836, 17205, 17391, 17766, 20100, 22155, 26565, 26796, 28680, 28920, 30381, 32131, 33411, 33930, 36856
Offset: 1
Keywords
Examples
190 is in the sequence because it is triangular (190=19*20/2) and 190=10*19, with 10 triangular number and 19 prime number.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..259 (all terms up to and including the 10000th triangular number)
Crossrefs
Programs
-
Maple
N:= 10^5: # to get all terms <= N Primes:= select(isprime, [2,seq(2*k+1,k=1..N/3)]): select(t -> issqr(1+8*t), {seq(seq(a*(a+1)/2*p, a = 2 .. floor(sqrt(2*N/p))), p = Primes)}); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Jan 07 2015
-
Mathematica
Join[{0},Module[{nn=300,trs},trs=Accumulate[Range[nn]];Select[ trs,AnyTrue[ #/trs,PrimeQ]&]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 16 2018 *)
-
PARI
{i=1; j=2;print1(0,", "); while(i<=10^5, k=1; p=2; c=0; while(k1, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}