cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253671 a(n) = floor(A000111(n)/A000111(n-1)).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40
Offset: 1

Views

Author

Paul Curtz, Jan 08 2015, with the help of Jean-François Alcover

Keywords

Comments

1, 2, 3, 4, ... first appear at n = 1, 3, 5, 7, 8, 10, 11, 13, ... . a(500) = 318.
Numbers appearing only once: interleave 4+7*n, 6+7*n, 9+7*n = 4, 6, 9, 11, 13, 16, ... .
This is a nondecreasing sequence.
The ratio a(n)/n asymptotically tends to 7/11 = 0.6363... - Jean-François Alcover, Jul 21 2015

Examples

			Floor of 1/1, 1/1, 2/1, 5/2, 16/5, 61/16, ... .
1=1*1+0, 1=1*1+0, 2=2*1+0, 5=2*2+1, 16=3*5+1, 61=3*16+13, 272=4*61+28, ... .
		

Crossrefs

Programs

  • Mathematica
    max = 500; ee = Table[2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, max}]; A000111 = Table[Differences[ee, n] // First // Abs, {n, 0, max}]; Table[Quotient[A000111[[n + 1]], A000111[[n]]], {n, 1, max}] (* Jean-François Alcover, Jan 08 2015 *)
  • PARI
    Vec(x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1)/((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 22 2015
    
  • Python
    # requires python 3.2 or higher
    from itertools import accumulate
    A253671_list, blist, l1, l2 = [1], [1], 1, 1
    for n in range(10**2):
        blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
        l2, l1 = l1, sum(blist)
        A253671_list.append(l1//l2) # Chai Wah Wu, Jan 29 2015

Formula

a(n+2) = a(n+1) + (0, 1, 0, followed by a sequence of period 11: repeat 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1).
a(n+12) = a(n+1) + (6, 7, 6, followed by 7's = A010727).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>15. - Colin Barker, Jan 22 2015
G.f.: x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1) / ((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jan 22 2015