A253672 Another fractal t(h)ree.
0, 1, 2, 0, 1, 3, 4, 5, 2, 0, 1, 3, 4, 6, 7, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 17, 14, 11, 8, 5, 2, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20
Offset: 0
Examples
. 0: | 0 1 2| . 1: 0 1 | 3 4 5| 2 . 2: 0 1 3 4 | 6 7 8| 5 2 . 3: 0 1 3 4 6 7 | 9 10 11| 8 5 2 . 4: 0 1 3 4 6 7 9 10 |12 13 14| 11 8 5 2 . 5: 0 1 3 4 6 7 9 10 12 13 |15 16 17| 14 11 8 5 2 . 6: 0 1 3 4 6 7 9 10 12 13 15 16 |18 19 20| 17 14 11 8 5 2 . 7: 0 1 3 4 6 7 9 10 12 13 15 16 18 19 |21 22 23| 20 17 14 11 8 5 2 .
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Éric Angelini, More (and more) fractal trees - and erasures, SeqFan list, Jan 08 2015.
Programs
-
Haskell
a253672 n k = a253672_tabf !! n !! k a253672_row n = a253672_tabf !! n a253672_tabf = [0,1,2] : f [] [0,1,2] [] (iterate (map (+ 3)) [3..5]) where f as bs cs (uvws:uvwss) = (as' ++ uvws ++ cs') : f as' uvws cs' uvwss where as' = as ++ [u,v]; cs' = [w] ++ cs [u,v,w] = bs a253672_list = concat a253672_tabf
Formula
T(n,0) = 0; T(n,1)=1; T(n,2*n-1) = 2; T(n+1,k+2) = T(n,k)+3, k = 0..3*n-1.
Comments