cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253680 Numbers c(n) whose square are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c(n)^2, starting at b(n) (A253679).

Original entry on oeis.org

204, 2940, 16296, 57960, 159060, 368004, 754320, 1412496, 2465820, 4070220, 6418104, 9742200, 14319396, 20474580, 28584480, 39081504, 52457580, 69267996, 90135240, 115752840, 146889204, 184391460, 229189296, 282298800, 344826300, 417972204, 503034840
Offset: 1

Views

Author

Vladimir Pletser, Jan 08 2015

Keywords

Comments

Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for M being an odd positive integer.
To every odd positive integer M corresponds a sum of M consecutive cubed integers starting at b^3 having at least one nontrivial solution. For n>=1, M(n)=(2n+1) (A005408), b(n) = M^3 -(3M-1)/2 = (2n+1)^3 - (3n+1) (A253679) and c(n) = M*(M^2-1)*(2M^2-1)/2 = 2n*(n+1)*(2n+1)*(8n*(n+1)+1) (A253680).
The trivial solutions with M < 1 and b < 2 are not considered here.
Stroeker stated that all odd values of M yield a solution to b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2. This was further demonstrated by Pletser.

Examples

			For n=1, M(n)=3, b(n)=23, c(n)=204.
See "File Triplets (M,b,c) for M=(2n+1)" link.
		

Crossrefs

Programs

  • Magma
    [2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 1 to 50000 do c:=2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): print (c); end do:
  • Mathematica
    f[n_] := 2 n (n + 1) (2 n + 1) (8 n (n + 1) + 1); Array[f, 36] (* Michael De Vlieger, Jan 10 2015 *)
  • PARI
    Vec(12*x*(x+1)*(17*x^2+126*x+17)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 09 2015
    

Formula

c(n) = 2n(n+1)*(2n+1)*(8n*(n+1)+1).
G.f.: 12*x*(x+1)*(17*x^2+126*x+17) / (x-1)^6. - Colin Barker, Jan 09 2015