cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253710 Second partial sums of tenth powers (A008454).

Original entry on oeis.org

1, 1026, 61100, 1169750, 12044025, 83384476, 437200176, 1864757700, 6779099625, 21693441550, 62545208076, 165314338826, 405941961425, 935824239000, 2042356907200, 4248401203176, 8470439399601, 16262944822650, 30186516503500, 54350088184350, 95193540843401, 162596916293876, 271426802958000, 443660070587500
Offset: 1

Views

Author

Luciano Ancora, Jan 10 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Programs

  • Mathematica
    a253710[n_] := Block[{f}, f[1] = 1; f[2] = 1026; f[x_] := 2*f[x - 1] - f[x - 2] + x^10; Array[f, n]]; a253710[21] (* Michael De Vlieger, Jan 11 2015 *)
    CoefficientList[Series[(1 + 1013 x + 47840 x^2 + 455192 x^3 + 1310354 x^4 + 1310354 x^5 + 455192 x^6 + 47840 x^7 + 1013 x^8 + x^9) / (1 - x)^13, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 19 2015 *)
    Nest[Accumulate,Range[30]^10,2] (* Harvey P. Dale, May 10 2019 *)

Formula

a(n) = n*(n+1)^2*(n+2)*(n^2 + 2*n - 2)*(2*n^6 + 12*n^5 + 16*n^4 - 16*n^3 - 17*n^2 + 30*n - 5)/264.
a(n) = 2*a(n-1)-a(n-2)+n^10.
G.f.: x*(1 + 1013*x + 47840*x^2 + 455192*x^3 + 1310354*x^4 + 1310354*x^5 + 455192*x^6 + 47840*x^7 + 1013*x^8 + x^9)/(1-x)^13. - Vincenzo Librandi, Jan 19 2015