A253710 Second partial sums of tenth powers (A008454).
1, 1026, 61100, 1169750, 12044025, 83384476, 437200176, 1864757700, 6779099625, 21693441550, 62545208076, 165314338826, 405941961425, 935824239000, 2042356907200, 4248401203176, 8470439399601, 16262944822650, 30186516503500, 54350088184350, 95193540843401, 162596916293876, 271426802958000, 443660070587500
Offset: 1
Links
- Luciano Ancora, Recurrence relation
- Luciano Ancora, Second partial sums of m-th powers
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
Programs
-
Mathematica
a253710[n_] := Block[{f}, f[1] = 1; f[2] = 1026; f[x_] := 2*f[x - 1] - f[x - 2] + x^10; Array[f, n]]; a253710[21] (* Michael De Vlieger, Jan 11 2015 *) CoefficientList[Series[(1 + 1013 x + 47840 x^2 + 455192 x^3 + 1310354 x^4 + 1310354 x^5 + 455192 x^6 + 47840 x^7 + 1013 x^8 + x^9) / (1 - x)^13, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 19 2015 *) Nest[Accumulate,Range[30]^10,2] (* Harvey P. Dale, May 10 2019 *)
Formula
a(n) = n*(n+1)^2*(n+2)*(n^2 + 2*n - 2)*(2*n^6 + 12*n^5 + 16*n^4 - 16*n^3 - 17*n^2 + 30*n - 5)/264.
a(n) = 2*a(n-1)-a(n-2)+n^10.
G.f.: x*(1 + 1013*x + 47840*x^2 + 455192*x^3 + 1310354*x^4 + 1310354*x^5 + 455192*x^6 + 47840*x^7 + 1013*x^8 + x^9)/(1-x)^13. - Vincenzo Librandi, Jan 19 2015
Comments