cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253711 Second partial sums of 11th powers (A008455).

Original entry on oeis.org

1, 2050, 181246, 4554746, 57756371, 473755052, 2867080476, 13850340492, 56214660117, 198578979742, 626254969978, 1796939330902, 4759784085863, 11772194010488, 27434359794488, 60688711622904, 128214959758953, 260009617974234, 508294535087734, 961379452201234, 1764741869856955, 3152422588924004, 5492913065904980
Offset: 1

Views

Author

Luciano Ancora, Jan 10 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Crossrefs

Cf. A008455.

Programs

  • Mathematica
    Table[n (n + 1) (n + 2) (70 n^10 + 700 n^9 + 2310 n^8 + 1680 n^7 - 4655 n^6 - 4410 n^5 + 8240 n^4 + 4120 n^3 - 7819 n^2 + 202 n + 1382)/10920, {n, 1, 20}] (* Vincenzo Librandi, Jan 15 2015 *)
    RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^11, a[1] == 1, a[2] == 2050}, a, {n, 1, 20}] (* Bruno Berselli, Jan 15 2015 *)

Formula

a(n) = n*(n+1)*(n+2)*(70*n^10 + 700*n^9 + 2310*n^8 + 1680*n^7 - 4655*n^6 - 4410*n^5 + 8240*n^4 + 4120*n^3 - 7819*n^2 + 202*n + 1382)/10920.
a(n) = 2*a(n-1) - a(n-2) + n^11.
G.f.: x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^14. - Vincenzo Librandi, Jan 15 2015