A253878 Indices of triangular numbers (A000217) which are also centered heptagonal numbers (A069099).
1, 22, 358, 5713, 91057, 1451206, 23128246, 368600737, 5874483553, 93623136118, 1492095694342, 23779907973361, 378986431879441, 6040003002097702, 96261061601683798, 1534136982624843073, 24449930660395805377, 389664753583708042966, 6210186126678932882086
Offset: 1
Examples
22 is in the sequence because the 22nd triangular number is 253, which is also the 9th centered heptagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..832
- Index entries for linear recurrences with constant coefficients, signature (17,-17,1).
Programs
-
Mathematica
LinearRecurrence[{17,-17,1},{1,22,358},20] (* Harvey P. Dale, Sep 10 2022 *)
-
PARI
Vec(-x*(x^2+5*x+1)/((x-1)*(x^2-16*x+1)) + O(x^100))
Formula
a(n) = 17*a(n-1)-17*a(n-2)+a(n-3).
G.f.: -x*(x^2+5*x+1) / ((x-1)*(x^2-16*x+1)).
a(n) = (-2+(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/4. - Colin Barker, Mar 04 2016
Comments