A253915 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..8, but not for k = 9.
43, 967, 11923, 213943, 2349313, 3316147, 30637567, 33421159, 39693817, 49978447, 105963769, 143405887, 148248949, 153756073, 156871549, 172981279, 187310803, 196726693, 203625283, 211977523, 220825453, 268375879, 350968543, 357834283, 414486697, 427990369
Offset: 1
Keywords
Examples
a(1) = 43: 0^4 + 0^3 + 0^2 + 0 + 43 = 43; 1^4 + 1^3 + 1^2 + 1 + 43 = 47; 2^4 + 2^3 + 2^2 + 2 + 43 = 73; 3^4 + 3^3 + 3^2 + 3 + 43 = 163; 4^4 + 4^3 + 4^2 + 4 + 43 = 383; 5^4 + 5^3 + 5^2 + 5 + 43 = 823; 6^4 + 6^3 + 6^2 + 6 + 43 = 1597; 7^4 + 7^3 + 7^2 + 7 + 43 = 2843; 8^4 + 8^3 + 8^2 + 8 + 43 = 4723; all nine are primes, and 9^4 + 9^3 + 9^2 + 9 + 43 = 7423 = 13*571 is composite. The next prime for p=43 appears for k=13, namely 30983.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..155 (terms < 2*10^10)
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[118*10^5]],AllTrue[#+{0,4,30,120,340,780,1554,2800,4680},PrimeQ]&&CompositeQ[#+7380]&] (* Harvey P. Dale, Sep 10 2021 *)
-
PARI
forprime(p=1, 1e10, if(isprime(p+4)&& isprime(p+30)&& isprime(p+120)&& isprime(p+340)&& isprime(p+780)&& isprime(p+1554)&& isprime(p+2800)&& isprime(p+4680) && !isprime(p+7380), print1(p,", ")))
Extensions
Edited by Wolfdieter Lang, Feb 20 2015
Corrected and extended by Harvey P. Dale, Sep 10 2021
Comments