A253921 Indices of octagonal numbers (A000567) which are also centered pentagonal numbers (A005891).
1, 51, 271, 24421, 130461, 11770711, 62881771, 5673458121, 30308883001, 2734595043451, 14608818724551, 1318069137485101, 7041420316350421, 635306589672775071, 3393949983662178211, 306216458153140098961, 1635876850704853547121, 147595697523223854923971
Offset: 1
Examples
51 is in the sequence because the 51st octagonal number is 7701, which is also the 56th centered pentagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..745
- Index entries for linear recurrences with constant coefficients, signature (1,482,-482,-1,1).
Programs
-
Magma
I:=[1,51,271,24421,130461]; [n le 5 select I[n] else Self(n-1)+482*Self(n-2)-482*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Jan 20 2015
-
Mathematica
CoefficientList[Series[(x^4 + 50 x^3 - 262 x^2 + 50 x + 1)/((1 - x) (x^2 - 22 x + 1) (x^2 + 22 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
PARI
Vec(-x*(x^4+50*x^3-262*x^2+50*x+1)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
Formula
a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+50*x^3-262*x^2+50*x+1) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).
Comments