A253938 A pyramid F(n,p,r) of successive triangular arrays read by rows, relating Dyck path peaks and returns to the x axis (n = semilength of Dyck paths, p = number of peaks, r = returns to the x axis).
1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 3, 3, 1, 2, 3, 0, 0, 0, 1, 1, 6, 4, 6, 8, 6, 1, 2, 3, 4, 0, 0, 0, 0, 1, 1, 10, 5, 20, 20, 10, 10, 15, 15, 10, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 1, 1, 15, 6, 50, 40, 15, 50, 60, 45, 20, 15, 24, 27, 24, 15, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
F(4,2,2) = M(2)*D(2,2)*I(2,2) = (4-1)/(1!*2!)*2!*1 = 3. There are 3 Dyck paths of semilength 4 with 2 peaks and 2 returns to the x axis. {(uudduudd)(uduuuddd)(uuudddud)} for n=4: p\r 1 2 3 4 1: 1 2: 3 3 3: 1 2 3 4: 0 0 0 1 F(7,4,3) = M(4)*D(4,3)* I(4,3) = [(7-1)(7-2)(7-3)]/(3!*4!)*18*(7-4) = 45. There are 45 Dyck paths of semilength 7 with 4 peaks and 3 returns to the x axis. for n=7: p\r 1 2 3 4 5 6 7 1: 1 2: 15 6 3: 50 40 15 4: 50 60 45 20 5: 15 24 27 24 15 6: 1 2 3 4 5 6 7: 0 0 0 0 0 0 1 The following is the ordering (read by rows) for n=1 to n=5 given in the DATA section: n, p\r 1 2 3 4 5 1, 1: 1 2, 1: 1 2, 2: 0 1 3, 1: 1 3, 2: 1 2 3, 3: 0 0 1 4, 1: 1 4, 2: 3 3 4, 3: 1 2 3 4, 4: 0 0 0 1 5, 1: 1 5, 2: 6 4 5, 3: 6 8 6 5, 4: 1 2 3 4 5, 5: 0 0 0 0 1 ... For a larger value of n.......... n=10: p\r 1 2 3 4 5 6 7 8 9 10 1: 1 2: 36 9 3: 336 168 36 4: 1176 882 378 84 5: 1764 1764 1134 504 126 6: 1176 1470 1260 840 420 126 7: 336 504 540 480 360 216 84 8: 36 63 81 90 90 81 63 36 9: 1 2 3 4 5 6 7 8 9 10: 0 0 0 0 0 0 0 0 0 1
Links
- Alois P. Heinz, Triangles n = 1..40, flattened
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202. See section 6.5.
Formula
F(n,p,r) = [r*(n-1)!*(n-r-1)!]/[p!*(p-r)!*(n-p)!(n-p-1)!], except if n=p=r then F(n,p,r) = 1. - Roger Ford, May 21 2016
F(n,p,r) is the product of a row multiplier array (M), a coefficient triangle array (D) and a numeric triangular array (I): F(n,p,r) = M(p)*D(p,r)*I(p,r).
The row multiplier array M(p) is
1: 1
2: (n-1)/(1!*2!)
3: [(n-1)(n-2)]/(2!*3!)
4: [(n-1)(n-2)(n-3)]/(3!*4!)
...
p: [(n-1)(n-2)...(n-p+1)]/[(p-1)!*p!]
...
The coefficient array D(p,r) uses a recursive formula except for D(p,1)=1 and D(p,p)= r!:
p\r 1 2 3 4 5 ...
1: 1
2: 1 2!
3: 1 4 3!
4: 1 6 18 4!
5: 1 8 36 96 5!
...
p: 1 D(p,r)=r*D(p-1,r-1)+D(p-1,r) ... r!
...
The numeric array I(p,r) is
p\r 1 2 3 4 ....r
1: 1
2: (n-2) 1
3: (n-2)(n-3) (n-3) 1
4: (n-2)(n-3)(n-4) (n-3)(n-4) (n-4) 1
p: (n-2)(n-3)..(n-p) (n-3)(n-4)..(n-p) (n-4)(n-5)..(n-p) (n-5)(n-6)..(n-p) ....1
Comments