A255535 Numbers representable as both b^c + b + c and x^y + x - y, where b, c, x, y are integers greater than 1.
14, 88, 65548, 33554459, 387420510, 1099511627800, 35184372088855, 3656158440063002, 459986536544739960976836, 1237940039285380274899124273, 6362685441135942358474828762538534230890216378
Offset: 1
Keywords
Examples
a(1) = 14 = 3^2 + 3 + 2 = 2^4 + 2 - 4. a(2) = 88 = 3^4 + 3 + 4 = 9^2 + 9 - 2. a(3) = 65548 = 4^8 + 4 + 8 = 16^4 + 16 - 4. a(4) = 33554459 = 2^25 + 2 + 25 = 32^5 + 32 - 5. a(5) = 387420510 = 3^18 + 3 + 18 = 27^6 + 27 - 6. a(6) = 1099511627800 = 4^20 + 4 + 20 = 32^8 + 32 - 8. a(7) = 35184372088855 = 8^15 + 8 + 15 = 32^9 + 32 - 9. a(8) = 3656158440063002 = 6^20 + 6 + 20 = 36^10 + 36 - 10. From _Michael S. Branicky_, May 15 2021: (Start) The following are terms: 459986536544739960976836 = 7^28 + 7 + 28 = 49^14 + 49 - 14, 1237940039285380274899124273 = 4^45 + 4 + 45 = 64^15 + 64 - 15, 6362685...0216378 (46 digits) = 9^48 + 9 + 48 = 81^24 + 81 - 24, and 1000000...0000070 (61 digits) = 10^60 + 10 + 60 = 100^30 + 100 - 30. (End)
Programs
-
Python
TOP = 100000000 a = [0]*TOP for y in range(2,TOP//2): if 2**y+2+y>=TOP: break for x in range(2,TOP//2): k = x**y+x+y if k>=TOP: break a[k]=1 for y in range(2,TOP//2): if 2**y+2-y>=TOP: break for x in range(2,TOP//2): k = x**y+x-y if k>=TOP: break if k>=0: a[k]|=2 print([n for n in range(TOP) if a[n]==3])
Extensions
a(5)-a(8) from Lars Blomberg, May 19 2015
a(9) from Michael S. Branicky confirmed by Chai Wah Wu, May 18 2021
a(10)-a(11) from Michael S. Branicky confirmed by Max Alekseyev, Mar 02 2025
Comments