A254039 Primes p such that (p^3 + 2)/3, (p^5 + 2)/3 and (p^7 + 2)/3 are prime.
524521, 1090891, 1383391, 2633509, 3371059, 4872331, 7304131, 7756669, 8819119, 8877331, 11536471, 12290851, 13362211, 13509649, 14658499, 15359401, 17094151, 17582329, 18191179, 18550891, 19416259, 20465209, 21971629, 22519531, 22619431, 25972561, 27155881, 29281699
Offset: 1
Keywords
Examples
a(1) = 524521; (524521^3 + 2)/3 = 48102471044890921; (524521^5 + 2)/3 = 13234061480615091039311002201; (524521^7 + 2)/3 = 3640985160809159281478976663465873196681; all four are prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..733
Programs
-
Magma
[p: p in PrimesInInterval(3, 10000000) | IsPrime((p^3 + 2) div 3) and IsPrime((p^5 + 2) div 3) and IsPrime((p^7 + 2) div 3)]; // Vincenzo Librandi, Mar 27 2015
-
Mathematica
Select[Prime[Range[10^7]], PrimeQ[(#^3 + 2)/3] && PrimeQ[(#^5 + 2)/3] && PrimeQ[(#^7 + 2)/3] &]
-
PARI
is(n)=n%9==1 && isprime(n) && isprime((n^3+2)/3) && isprime((n^5+2)/3) && isprime((n^7+2)/3) \\ Charles R Greathouse IV, Jan 23 2015
Comments