cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254039 Primes p such that (p^3 + 2)/3, (p^5 + 2)/3 and (p^7 + 2)/3 are prime.

Original entry on oeis.org

524521, 1090891, 1383391, 2633509, 3371059, 4872331, 7304131, 7756669, 8819119, 8877331, 11536471, 12290851, 13362211, 13509649, 14658499, 15359401, 17094151, 17582329, 18191179, 18550891, 19416259, 20465209, 21971629, 22519531, 22619431, 25972561, 27155881, 29281699
Offset: 1

Views

Author

K. D. Bajpai, Jan 23 2015

Keywords

Comments

All the terms in this sequence are 1 mod 9.

Examples

			a(1) = 524521;
(524521^3 + 2)/3 = 48102471044890921;
(524521^5 + 2)/3 = 13234061480615091039311002201;
(524521^7 + 2)/3 = 3640985160809159281478976663465873196681;
all four are prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3, 10000000) | IsPrime((p^3 + 2) div 3) and IsPrime((p^5 + 2) div 3) and IsPrime((p^7 + 2) div 3)]; // Vincenzo Librandi, Mar 27 2015
  • Mathematica
    Select[Prime[Range[10^7]], PrimeQ[(#^3 + 2)/3] && PrimeQ[(#^5 + 2)/3] && PrimeQ[(#^7 + 2)/3] &]
  • PARI
    is(n)=n%9==1 && isprime(n) && isprime((n^3+2)/3) && isprime((n^5+2)/3) && isprime((n^7+2)/3) \\ Charles R Greathouse IV, Jan 23 2015