cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254066 Primitive numbers n such that the sums of the digits of n and n^2 coincide.

Original entry on oeis.org

1, 9, 18, 19, 45, 46, 55, 99, 145, 189, 198, 199, 289, 351, 361, 369, 379, 388, 451, 459, 468, 495, 496, 558, 559, 568, 585, 595, 639, 729, 739, 775, 838, 855, 954, 955, 999, 1098, 1099, 1179, 1188, 1189, 1198, 1269, 1468, 1485, 1494, 1495, 1585, 1738, 1747
Offset: 1

Views

Author

Nikhil Mahajan, Jan 25 2015

Keywords

Comments

Members of A058369 not congruent to 0 (mod 10).
This sequence is to A058369 what A114135 is to A111434.
Hare, Laishram, & Stoll show that this sequence is infinite. In particular for each k in {846, 847, 855, 856, 864, 865, 873, ...} there are infinitely many terms in this sequence with digit sum k. - Charles R Greathouse IV, Aug 25 2015

Examples

			9 is in the sequence because the digit sum of 9^2 = 81 is 9.
18 is in the sequence because the digit sum of 18^2 = 324 is 9, same as the digit sum of 18.
		

Crossrefs

Subsequence of A090570.

Programs

  • Magma
    [n: n in [1..1000] | &+Intseq(n) eq &+Intseq(n^2) and not IsZero(n mod 10)]; // Bruno Berselli, Jan 29 2015
    
  • Mathematica
    Select[Range[1000],!Divisible[#,10]&&Total[IntegerDigits[#]] == Total[ IntegerDigits[#^2]]&] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    is(n)=sumdigits(n)==sumdigits(n^2) \\ Charles R Greathouse IV, Aug 25 2015
    
  • PARI
    list(lim)=my(v=List()); forstep(n=1,lim,[8, 9, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 9], if(sumdigits(n)==sumdigits(n^2), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Aug 26 2015
  • Sage
    [n for n in [0..1000] if sum(n.digits())==sum((n^2).digits()) and n%10!=0] # Tom Edgar, Jan 27 2015
    

Extensions

More terms from Harvey P. Dale, Dec 27 2015