A254124 The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.
1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (12,-24,5).
Programs
-
PARI
Vec((1-8*x+5*x^2)/(1-12*x+24*x^2-5*x^3) + O(x^30)) \\ Michel Marcus, Jan 26 2015
Formula
G.f.: (1 - 8*x + 5*x^2)/(1 - 12*x + 24*x^2 - 5*x^3).
a(n) = 12*a(n-1) - 24*a(n-2) + 5*a(n-3) for n > 2. - Colin Barker, Jun 07 2020
Comments