A254196 a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1
Keywords
Examples
a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1. a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1. a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4. a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8. a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
Links
- Robert Israel, Table of n, a(n) for n = 1..422
- Eric Weisstein's World of Mathematics, Smooth Number
Programs
-
Maple
seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
-
Mathematica
Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]] b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n] Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
-
PARI
a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017
Comments