A254233 Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.
1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0
Examples
For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Formula
G.f.: (x^12-x^11+x^10+3*x^9+5*x^8+x^7+4*x^6+x^5+5*x^4+3*x^3+x^2-x+1) / ((x^2+1)*(x^2-x+1)*(x^2+x+1)^3*(x+1)^4*(x-1)^8). - Alois P. Heinz, Apr 21 2015
Extensions
Fixed definition and examples by Kellen Myers, Apr 21 2015
a(14)-a(39) from Alois P. Heinz, Apr 21 2015