cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254284 Indices of centered triangular numbers (A005448) which are also hexagonal numbers (A000384).

Original entry on oeis.org

1, 36, 133, 6888, 25705, 1336140, 4986541, 259204176, 967363153, 50284273908, 187663465045, 9754889933880, 36405744855481, 1892398362898716, 7062526838498173, 367115527512416928, 1370093800923789985, 71218519939045985220, 265791134852376758821
Offset: 1

Views

Author

Colin Barker, Jan 28 2015

Keywords

Comments

Also positive integers y in the solutions to 4*x^2 - 3*y^2 - 2*x + 3*y - 2 = 0, the corresponding values of x being A254283.

Examples

			36 is in the sequence because the 36th centered triangular number is 1891, which is also the 31st hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,194,-194,-1,1},{1,36,133,6888,25705},20] (* Harvey P. Dale, Nov 11 2020 *)
  • PARI
    Vec(x*(35*x^3+97*x^2-35*x-1)/((x-1)*(x^2-14*x+1)*(x^2+14*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+194*a(n-2)-194*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(35*x^3+97*x^2-35*x-1) / ((x-1)*(x^2-14*x+1)*(x^2+14*x+1)).

A254285 Hexagonal numbers (A000384) which are also centered triangular numbers (A005448).

Original entry on oeis.org

1, 1891, 26335, 71156485, 991081981, 2677903145191, 37298379237211, 100780206894952201, 1403687203222107385, 3792762303606727977835, 52826364168762410080471, 142736816433155393822880781, 1988067387723517337746328821, 5371757345852607787523567324911
Offset: 1

Views

Author

Colin Barker, Jan 28 2015

Keywords

Examples

			1891 is in the sequence because it is the 31st hexagonal number and the 36th centered triangular number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+1890*x^3-13190*x^2+1890*x+1)/((x-1)*(x^2-194*x+1)*(x^2+194*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+37634*a(n-2)-37634*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+1890*x^3-13190*x^2+1890*x+1) / ((x-1)*(x^2-194*x+1)*(x^2+194*x+1)).
Showing 1-2 of 2 results.