A254315 Number of distinct digits in the prime factorization of n (counting terms of the form p^1 as p).
1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3
Offset: 2
Examples
a(36)=2 because 36 = 2^2 * 3^2 => 2 distinct digits. a(414)=2 because 414 = 2 * 3^2 * 23 => 2 distinct digits.
Links
- Michel Lagneau, Table of n, a(n) for n = 2..10000
Programs
-
Maple
with(ListTools): nn:=100: for n from 2 to nn do: n0:=length(n):lst:={}:x0:=ifactors(n): y:=Flatten(x0[2]):z:=convert(y,set): z1:=z minus {1}:nn0:=nops(z1): for k from 1 to nn0 do : t1:=convert(z1[k],base,10):z2:=convert(t1,set): lst:=lst union z2: od: nn1:=nops(lst):printf(`%d, `,nn1): od :
-
Mathematica
f[n_] := Block[{pf = FactorInteger@ n, i}, Length@ DeleteDuplicates@ Flatten@ IntegerDigits@ Rest@ Flatten@ Reap@ Do[If[Last[pf[[i]]] == 1, Sow@ First@ pf[[i]], Sow@ FromDigits@ Flatten[IntegerDigits /@ pf[[i]]]], {i, Length@ pf}]]; Array[f,100] (* Michael De Vlieger, Jan 29 2015 *)
-
PARI
print1(1,", ");for(k=2,100,s=[];F=factor(k);for(i=1,#F[,1],s=concat(s,digits(F[i,1]));if(F[i,2]>1,s=concat(s,digits(F[i,2]))));print1(#vecsort(s,,8),", ")) \\ Derek Orr, Jan 30 2015
-
Python
from sympy import factorint def A254315(n): return len(set([x for l in [[d for d in str(p)]+[d for d in str(e) if d != '1'] for p,e in factorint(n).items()] for x in l])) # Chai Wah Wu, Feb 24 2015
Comments