cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254316 Hankel transform of a(n) is A006720(n+1). Hankel transform of a(n+1) is A006720(n+3).

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 299, 1172, 4677, 18947, 77746, 322545, 1350906, 5704822, 24265651, 103872254, 447146683, 1934538301, 8407277728, 36685185300, 160663301053, 705974374128, 3111584887543, 13752592535137, 60939737103636, 270672216346769, 1204862348053296
Offset: 0

Views

Author

Michael Somos, Jan 28 2015

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 299*x^6 + 1172*x^7 + ...
		

Crossrefs

Cf. A006720.

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x+x^2-Sqrt[(1-4*x+x^2)^2-4*x^3])/(2*x*(1 - x)), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - 2*x + x^2 - sqrt( (1-4*x+x^2)^2 - 4*x^3 + x^2 * O(x^n))) / (2*x*(1 - x)), n))};

Formula

Given g.f. A(x), 0 = (x^2-x)*A(x)^2 + (x^2-2*x+1)*A(x) + (2*x-1).
G.f.: (1 - 2*x + x^2 - sqrt( (1-4*x+x^2)^2 - 4*x^3 )) / (2*x*(1 - x)).
Conjecture: +(n+1)*a(n) +(-8*n+3)*a(n-1) +(18*n-29)*a(n-2) +(-12*n+31)*a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Jun 07 2016