cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247080 Numbers whose Euler totient is the reverse of the sum of its aliquot parts.

Original entry on oeis.org

2, 735, 7665, 11505, 42630, 64578, 3440409, 11263073973
Offset: 1

Views

Author

Paolo P. Lava, Nov 17 2014

Keywords

Comments

Value of x such that phi(x) = Rev(sigma(x) - x).
a(9) > 2*10^11. - Hiroaki Yamanouchi, Nov 22 2014
a(9) > 10^13. - Giovanni Resta, Aug 26 2019

Examples

			phi(2) = 1 and sigma(2) - 2 = 1.
phi(735) = 336 and sigma(735) - 735 = 633.
phi(7665) = 3456 and sigma(7665) - 7665 = 6543.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do
    y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* Michael De Vlieger, Jan 29 2015 *)
  • PARI
    rev(n) = subst(Polrev(digits(n)), x, 10);
    isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ Michel Marcus, Jan 29 2015

Extensions

a(7)-a(8) from Hiroaki Yamanouchi, Nov 22 2014
Showing 1-1 of 1 results.