cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A254368 a(n) = 5*2^n + 3^n + 15.

Original entry on oeis.org

21, 28, 44, 82, 176, 418, 1064, 2842, 7856, 22258, 64184, 187402, 551936, 1635298, 4864904, 14512762, 43374416, 129795538, 388731224, 1164882922, 3492027296, 10470838978, 31402031144, 94185121882, 282513422576, 847456381618, 2542201372664, 7626268573642, 22878134632256, 68633061719458, 205896500803784, 617684133702202
Offset: 0

Views

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of third terms of "fifth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[5 2^n + 3^n + 15, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
    LinearRecurrence[{6,-11,6},{21,28,44},40] (* Harvey P. Dale, Apr 26 2022 *)
  • PARI
    vector(30, n, n--; 5*2^n + 3^n + 15) \\ Colin Barker, Jan 30 2015

Formula

G.f.: -(107*x^2-98*x+21) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 30 2015
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). - Colin Barker, Jan 30 2015

A254369 a(n) = 15*2^n + 4^n + 5*3^n + 35.

Original entry on oeis.org

56, 84, 156, 354, 936, 2754, 8736, 29274, 102216, 368274, 1359216, 5110794, 19495896, 75203394, 292596096, 1145977914, 4511183976, 17827536114, 70660511376, 280697078634, 1116961278456, 4450379734434, 17749154257056, 70839585900954, 282887376051336, 1130136853206354, 4516309963145136, 18052528510172874, 72171982026734616
Offset: 0

Views

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of fourth terms of "fifth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[15 2^n + 4^n + 5 3^n + 35, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
    LinearRecurrence[{10,-35,50,-24},{56,84,156,354},30] (* Harvey P. Dale, Dec 04 2020 *)
  • PARI
    vector(30, n, n--; 15*2^n + 4^n + 5*3^n + 35) \\ Colin Barker, Jan 30 2015

Formula

G.f.: -2*(533*x^3-638*x^2+238*x-28) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jan 30 2015
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Jan 30 2015

A254467 a(n) = 15*4^n + 70*2^n + 35*3^n + 5^(n+1) + 6^n + 126.

Original entry on oeis.org

252, 462, 1122, 3432, 12342, 49632, 216342, 1001952, 4863462, 24500352, 127161462, 676195872, 3668030982, 20227217472, 113076824982, 639383508192, 3649985092902, 21003583828992, 121677813214902, 708891056106912, 4149610383537222
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of sixth terms of "fifth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[15×4^n+70×2^n+35×3^n+5^(n+1)+6^n+126, {n, 0, 25}] (* Michael De Vlieger, Jan 31 2015 *)
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{252,462,1122,3432,12342,49632},30] (* Harvey P. Dale, Jul 16 2018 *)
  • PARI
    vector(30, n, n--; 15*4^n + 70*2^n + 35*3^n + 5^(n+1) + 6^n + 126) \\ Colin Barker, Jan 31 2015

Formula

G.f.: -6*(21310*x^5 -34383*x^4 +20750*x^3 -5920*x^2 +805*x -42) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Jan 31 2015
a(n) = 21*a(n-1)-175*a(n-2)+735*a(n-3)-1624*a(n-4)+1764*a(n-5)-720*a(n-6). - Colin Barker, Jan 31 2015

A254468 a(n) = 35*4^n + 126*2^n + 70*3^n + 15*5^n + 5*6^n + 7^n + 210.

Original entry on oeis.org

462, 924, 2508, 8646, 35112, 159654, 787968, 4137966, 22807752, 130656534, 772253328, 4683193086, 29012227992, 182964472614, 1171328741088, 7594839621006, 49780643849832, 329318254755894, 2195866174387248, 14741498331453726, 99542297086537272
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of seventh terms of "fifth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[35 4^n + 126 2^n + 70 3^n + 15 5^n + 5 6^n + 7^n + 210, {n, 0, 25}] (* Michael De Vlieger, Jan 31 2015 *)
    LinearRecurrence[{28,-322,1960,-6769,13132,-13068,5040},{462,924,2508,8646,35112,159654,787968},30] (* Harvey P. Dale, Dec 29 2019 *)
  • PARI
    vector(30, n, n--; 35*4^n + 126*2^n + 70*3^n + 15*5^n + 5*6^n + 7^n + 210) \\ Colin Barker, Jan 31 2015

Formula

G.f.: -6*(259610*x^6 -461263*x^5 +319473*x^4 -111595*x^3 +20900*x^2 -2002*x +77) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Jan 31 2015
a(n) = 28*a(n-1) -322*a(n-2) +1960*a(n-3) -6769*a(n-4) +13132*a(n-5) -13068*a(n-6) +5040*a(n-7). - Colin Barker, Jan 31 2015
Showing 1-4 of 4 results.