A254374 Digital roots of centered pentagonal numbers (A005891).
1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6, 4, 7, 6, 1, 1, 6, 7, 4, 6
Offset: 1
Examples
a(3) = 7 because the 3rd centered pentagonal number is 16, the digital root of which is 7.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
FixedPoint[Plus @@ IntegerDigits[#] &, #] & /@ Table[(5 n^2 + 5 n + 2)/2, {n, 0, 80}] (* Michael De Vlieger, Feb 01 2015 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 6, 7, 4, 6, 4, 7, 6, 1},86] (* Ray Chandler, Aug 26 2015 *) PadRight[{},120,{1,6,7,4,6,4,7,6,1}] (* Harvey P. Dale, Aug 23 2017 *)
-
PARI
m=5; vector(200, n, (m*n*(n-1)/2)%9+1)
Comments