A254409 a(n) is the least x such that tau(x) divides (x-1)^n but not (x-1)^(n-1), for n >= 2.
15, 135, 1155, 10395, 135135, 2297295, 57432375, 1003917915, 25097947875
Offset: 2
Examples
tau(15) = 4; (15 - 1)^2 = 196 and 196 / 4 = 49. tau(135) = 8; (135 - 1)^3 = 2406104 and 2406104 / 8 = 300763. tau(1155) = 16; (1155 - 1)^4 = 1773467504656 and 1773467504656 / 16 = 110841719041.
Programs
-
Maple
with(numtheory):P:=proc(q) local a,j,k,n; for k from 2 to q do for n from 1 to q do if not isprime(n) then if type((n-1)^k/tau(n),integer) then if not type((n-1)^(k-1)/tau(n),integer) then print(n); break; fi; fi; fi; od; od;end: P(10^9);
-
PARI
for(n=2, 10, forcomposite(x=1, , if(Mod((x-1)^n, numdiv(x))==0 && Mod((x-1)^(n-1), numdiv(x))!=0, print1(x, ", "); break({1})))) \\ Felix Fröhlich, Feb 12 2015
-
PARI
isok(k, n) = {my(m = Mod(k-1, numdiv(k))); (m^(n-1) != 0) && (m^n == 0);} a(n) = {my(k=2); while(!isok(k, n), k++); k}; \\ Michel Marcus, Aug 20 2018
Extensions
a(8)-a(9) from Felix Fröhlich, Feb 12 2015
a(10) from Amiram Eldar, Jul 02 2023
Comments