cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254469 Sixth partial sums of cubes (A000578).

Original entry on oeis.org

1, 14, 96, 450, 1650, 5082, 13728, 33462, 75075, 157300, 311168, 586092, 1058148, 1841100, 3100800, 5073684, 8090181, 12603954, 19228000, 28778750, 42329430, 61274070, 87403680, 122996250, 170922375, 234768456, 318979584, 429024376, 571584200, 754769400
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1,  7, 19,  37,   61,   91, ... (A003215)
-------------------------------------------------------------------------
The cubes:           1,  8, 27,  64,  125,  216, ... (A000578)
-------------------------------------------------------------------------
First partial sums:  1,  9, 36, 100,  225,  441, ... (A000537)
Second partial sums: 1, 10, 46, 146,  371,  812, ... (A024166)
Third partial sums:  1, 11, 57, 203,  574, 1386, ... (A101094)
Fourth partial sums: 1, 12, 69, 272,  846, 2232, ... (A101097)
Fifth partial sums:  1, 13, 82, 354, 1200, 3432, ... (A101102)
Sixth partial sums:  1, 14, 96, 450, 1650, 5082, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n)^2 (2 + n) (3 + n) (4 + n) (5 + n)^2 (6 + n)/60480, {n, 27}] (* or *) CoefficientList[Series[(1 + 4 x + x^2)/(- 1 + x)^10, {x, 0, 26}], x]
    Nest[Accumulate,Range[30]^3,6] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,14,96,450,1650,5082,13728,33462,75075,157300},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    a(n)=n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (x + 4*x^2 + x^3)/(- 1 + x)^10.
a(n) = n*(1 + n)^2*(2 + n)*(3 + n)*(4 + n)*(5 + n)^2*(6 + n)/60480.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^3.
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 217/200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 223769/200 - 8064*log(2)/5. (End)