A254473 24-hedral numbers: a(n) = (2*n + 1)*(8*n^2 + 14*n + 7).
7, 87, 335, 847, 1719, 3047, 4927, 7455, 10727, 14839, 19887, 25967, 33175, 41607, 51359, 62527, 75207, 89495, 105487, 123279, 142967, 164647, 188415, 214367, 242599, 273207, 306287, 341935, 380247, 421319, 465247, 512127, 562055, 615127, 671439, 731087
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Luciano Ancora, The 24-hedral Number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(2*n+1)*(8*n^2+14*n+7): n in [0..40]]; // Bruno Berselli, Mar 27 2015
-
Maple
seq((2*n + 1)*(8*n^2 + 14*n + 7), n=0..100); # Robert Israel, Jan 11 2016
-
Mathematica
Table[(2 n + 1) (8 n^2 + 14 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {7, 87, 335, 847}, 40]
-
PARI
vector(40, n, n--; (2*n+1)*(8*n^2+14*n+7)) \\ Bruno Berselli, Mar 27 2015
-
Sage
[(2*n+1)*(8*n^2+14*n+7) for n in (0..40)] # Bruno Berselli, Mar 27 2015
Formula
G.f.: (7 + 59*x + 29*x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).
a(n) = 6*Sum_{k=0..n} (2*k+1)^2 + (2*n+1)^3. - Robert FERREOL, Nov 13 2023
Comments