A046142 Haüy rhombic dodecahedral numbers.
1, 33, 185, 553, 1233, 2321, 3913, 6105, 8993, 12673, 17241, 22793, 29425, 37233, 46313, 56761, 68673, 82145, 97273, 114153, 132881, 153553, 176265, 201113, 228193, 257601, 289433, 323785, 360753, 400433, 442921, 488313, 536705, 588193, 642873, 700841
Offset: 1
References
- H. Steinhaus, Mathematical Snapshots, 3rd ed. New York: Dover, pp. 185-186, 1999.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- R.-J. Haüy, Essai d'une théorie sur la structure des crystaux appliquée à plusieurs genres de substances crystallisées, 1784.
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000 which lists Haüy rhombic dodecahedral numbers as "RhoDod(n)."
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(2*n-1)*(8*n^2-14*n+7): n in [1..40]]; // Vincenzo Librandi, Mar 29 2015
-
Maple
A046142:=n->(2*n-1)*(8*n^2-14*n+7): seq(A046142(n), n=1..50); # Wesley Ivan Hurt, Mar 02 2016
-
Mathematica
Table[(2 n - 1) (8 n^2 - 14 n + 7), {n, 40}] (* Vincenzo Librandi, Mar 29 2015 *) LinearRecurrence[{4, -6, 4, -1}, {1, 33, 185, 553}, 20] (* Eric W. Weisstein, Sep 27 2017 *) CoefficientList[Series[(1 + 29 x + 59 x^2 + 7 x^3)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
PARI
Vec(x*(7*x^3+59*x^2+29*x+1)/(x-1)^4 + O(x^50)) \\ Michel Marcus, Mar 24 2015
Formula
a(n) = (2*n - 1)*(8*n^2 - 14*n + 7).
G.f.: x*(7*x^3 +59*x^2 +29*x +1)/(1-x)^4. - Colin Barker, Oct 26 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. - Wesley Ivan Hurt, Mar 02 2016
E.g.f.: (-7 +8*x +12*x^2 +16*x^3)*exp(x) + 7. - G. C. Greubel, Nov 04 2017
Comments