cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A046142 Haüy rhombic dodecahedral numbers.

Original entry on oeis.org

1, 33, 185, 553, 1233, 2321, 3913, 6105, 8993, 12673, 17241, 22793, 29425, 37233, 46313, 56761, 68673, 82145, 97273, 114153, 132881, 153553, 176265, 201113, 228193, 257601, 289433, 323785, 360753, 400433, 442921, 488313, 536705, 588193, 642873, 700841
Offset: 1

Views

Author

Keywords

Comments

The Haüy rhombic dodecahedral formula is remarkably similar to that of A254473, the 24-hedral numbers: a(n) = (2*n+1)*(8*n^2+14*n+7). Compare with (2*n-1)*(8*n^2-14*n+7); the differences are simple: (1) the first factor of the dodecahedral formula has "+1" and the 24-hedral formula has "-1"; (2) the second factor of the former has "-14n" and the latter has "+14n". Note that the rhombic dodecahedron has 24 edges. The difference between these sequences is diff(n) = 72*n^2 + 14. - Peter M. Chema, Jan 09 2016
Named after the French priest and mineralogist René Just Haüy (1743-1822). - Amiram Eldar, Jun 22 2021

References

  • H. Steinhaus, Mathematical Snapshots, 3rd ed. New York: Dover, pp. 185-186, 1999.

Crossrefs

Programs

  • Magma
    [(2*n-1)*(8*n^2-14*n+7): n in [1..40]]; // Vincenzo Librandi, Mar 29 2015
  • Maple
    A046142:=n->(2*n-1)*(8*n^2-14*n+7): seq(A046142(n), n=1..50); # Wesley Ivan Hurt, Mar 02 2016
  • Mathematica
    Table[(2 n - 1) (8 n^2 - 14 n + 7), {n, 40}] (* Vincenzo Librandi, Mar 29 2015 *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 33, 185, 553}, 20] (* Eric W. Weisstein, Sep 27 2017 *)
    CoefficientList[Series[(1 + 29 x + 59 x^2 + 7 x^3)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    Vec(x*(7*x^3+59*x^2+29*x+1)/(x-1)^4 + O(x^50)) \\ Michel Marcus, Mar 24 2015
    

Formula

a(n) = (2*n - 1)*(8*n^2 - 14*n + 7).
G.f.: x*(7*x^3 +59*x^2 +29*x +1)/(1-x)^4. - Colin Barker, Oct 26 2012
a(n) = A016755(n) + A069072(n-1). - Luciano Ancora, Mar 23 2015
a(n) = A016755(n) + 6*A000447(n-1). - Luciano Ancora, Mar 23 2015
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4. - Wesley Ivan Hurt, Mar 02 2016
E.g.f.: (-7 +8*x +12*x^2 +16*x^3)*exp(x) + 7. - G. C. Greubel, Nov 04 2017
Showing 1-1 of 1 results.