A254499 Amicable factorions.
1, 2, 145, 871, 872, 40585, 45361, 45362
Offset: 1
Examples
871 and 45361 are in the sequence because: 871 => 8!+7!+1! = 40320 +5040 + 1 = 45361; 45361 => 4!+5!+3!+6!+1! = 24 + 120 + 6 + 720 + 1 = 871.
References
- P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
Links
- S. S. Gupta, Sum of the factorials of the digits of integers, Math. Gaz. 88 (512) (2004) 258-261
- P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
- G. D. Poole, Integers and the sum of the factorials of their digits, Math. Mag., 44 (1971), 278-279, [JSTOR].
- H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
- Eric Weisstein's World of Mathematics, Factorion
Programs
-
Mathematica
Select[Range[10^6], Plus @@ (IntegerDigits[Plus @@ (IntegerDigits[ # ]!) ]!) == # &]
Formula
n such that f(f(n))=n, where f(k)=A061602(k).
Comments