cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254522 Numerators of (2^n - 1 + (-1)^n)/(2*n), n > 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 16, 9, 16, 85, 256, 93, 512, 315, 4096, 5461, 2048, 3855, 65536, 13797, 131072, 349525, 1048576, 182361, 1048576, 3355443, 16777216, 22369621, 33554432, 9256395, 268435456, 34636833, 67108864, 1431655765, 4294967296, 17179869183, 8589934592, 1857283155, 68719476736, 91625968981
Offset: 1

Views

Author

Paul Curtz, Jan 31 2015

Keywords

Comments

An autosequence of the first kind is a sequence which main diagonal is A000004.
Difference table of a(n)/A093803(n):
0, 1, 1, 2, 3, 16/3, ...
1, 0, 1, 1, 7/3, 11/3, ...
-1, 1, 0, 4/3, 4/3, 10/3, ...
2, -1, 4/3, 0, 2, 2, ...
-3, 7/3, -4/3, 2, 0, 16/5, ...
16/3, -11/3, 10/3, -2, 16/5, 0, ...
etc.
This is an autosequence of the first kind.
Its first (or second) upper diagonal is A075101(n)/(2*A000265(n)).
From Robert Israel, Apr 03 2017: (Start)
If p is a prime == 5 (mod 8), then a(5*p) = (2^(5*p-1)-1)/5 and a(5*p+3) = 2^(5*p) = 10*a(5*p)+2. This explains pairs such as
a(25) = 3355443
a(28) = 33554432
and
a(65) = 3689348814741910323
a(68) = 36893488147419103232. (End)

Crossrefs

Programs

  • Maple
    seq(numer((2^n-1+(-1)^n)/(2*n)), n=1..50); # Robert Israel, Feb 01 2015
  • Mathematica
    Table[Numerator[(2^n - 1 + (-1)^n)/(2*n)], {n, 39}] (* Michael De Vlieger, Feb 01 2015 *)

Extensions

a(25) corrected by Robert Israel, Apr 03 2017