A254571 Least multiplier k such that k*n is abundant or perfect (A023196).
6, 3, 2, 3, 4, 1, 4, 3, 2, 2, 6, 1, 6, 2, 2, 3, 6, 1, 6, 1, 2, 3, 6, 1, 4, 3, 2, 1, 6, 1, 6, 3, 2, 3, 2, 1, 6, 3, 2, 1, 6, 1, 6, 2, 2, 3, 6, 1, 4, 2, 2, 2, 6, 1, 4, 1, 2, 3, 6, 1, 6, 3, 2, 3, 4, 1, 6, 3, 2, 1, 6, 1, 6, 3, 2, 3, 4, 1, 6, 1, 2, 3, 6, 1, 4, 3, 2
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; uses numtheory; for k from 1 to 4 do if sigma(k*n)>=2*k*n then return k fi od: 6 end proc: map(f, [$1..100]); # Robert Israel, Feb 10 2019
-
Mathematica
a[n_] := Do[If[DivisorSigma[1, k*n] >= 2*k*n, Return[k]], {k, {1, 2, 3, 4, 6}}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 09 2023 *)
-
PARI
a(n) = for(k=1,6,if(sigma(k*n)>=2*k*n,return(k)))
Formula
a(A023196(n)) = 1. - Michel Marcus, Feb 02 2015
Comments