cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A254671 Numbers that can be represented as x*y + x + y, where x >= y > 1.

Original entry on oeis.org

8, 11, 14, 15, 17, 19, 20, 23, 24, 26, 27, 29, 31, 32, 34, 35, 38, 39, 41, 43, 44, 47, 48, 49, 50, 51, 53, 54, 55, 56, 59, 62, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2015

Keywords

Comments

Apparently 8 and the elements of A061743. - R. J. Mathar, Feb 19 2015
This is true. For proof, see link.
As x*y + x + y = (x + 1)*(y + 1) - 1 where x >= y > 1 we have k = a(n) is in the sequence if and only if k + 1 is an odd composite or k + 1 is an even number with more than 4 divisors. - David A. Corneth, Oct 15 2024

Examples

			14 = 2*4 + 2 + 4.
15 = 3*3 + 3 + 3.
There is no way to express 16 in this form, so it is not in the sequence.
		

Crossrefs

Cf. A071904, A254636 is the complement.

Programs

  • Maple
    filter:= proc(n) local t;
      if n::odd then numtheory:-tau(n+1) > 4 else not isprime(n+1) fi
    end proc:
    select(filter, [$1..200]); # Robert Israel, Nov 14 2024
  • Mathematica
    sol[t_] := Solve[x >= y > 1 && x y + x + y == t, {x, y}, Integers];
    Select[Range[200], sol[#] != {}&] (* Jean-François Alcover, Jul 28 2020 *)
  • Python
    def aupto(limit):
        cands = range(2, limit//3+1)
        nums = [x*y+x+y for i, y in enumerate(cands) for x in cands[i:]]
        return sorted(set(k for k in nums if k <= limit))
    print(aupto(113)) # Michael S. Branicky, Aug 11 2021
    
  • Python
    from sympy import primepi
    def A254671(n):
        def f(x): return int(n+(x>=7)+primepi(x+1)+primepi(x+1>>1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 14 2024

A254572 Least multiple of n that is abundant or perfect (A023196).

Original entry on oeis.org

6, 6, 6, 12, 20, 6, 28, 24, 18, 20, 66, 12, 78, 28, 30, 48, 102, 18, 114, 20, 42, 66, 138, 24, 100, 78, 54, 28, 174, 30, 186, 96, 66, 102, 70, 36, 222, 114, 78, 40, 246, 42, 258, 88, 90, 138, 282, 48, 196, 100, 102, 104, 318, 54, 220, 56, 114, 174, 354, 60
Offset: 1

Views

Author

Jeppe Stig Nielsen, Feb 01 2015

Keywords

Comments

See A254571(n) = a(n)/n for the multipliers.
Very often a(n) = A064162(n), but the definition of the latter requires strict abundance.

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; uses numtheory;
          for k from 1 to 4 do if sigma(k*n)>=2*k*n then return k*n fi od:
          6*n
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 10 2019
  • Mathematica
    a[n_] := Do[If[DivisorSigma[1, k*n] >= 2*k*n, Return[k*n]], {k, {1, 2, 3, 4, 6}}];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 09 2023 *)
  • PARI
    a(n) = forstep(m=n,6*n,n,if(sigma(m)>=2*m,return(m)))

A384665 Smallest odd multiplier k such that k*n is abundant.

Original entry on oeis.org

945, 9, 315, 3, 189, 3, 135, 3, 105, 3, 315, 1, 315, 3, 63, 3, 315, 1, 315, 1, 45, 3, 315, 1, 63, 3, 35, 3, 315, 1, 315, 3, 105, 3, 27, 1, 315, 3, 105, 1, 315, 1, 315, 3, 21, 3, 315, 1, 45, 3, 105, 3, 315, 1, 63, 1, 105, 3, 315, 1, 315, 3, 15, 3, 63, 1, 315, 3
Offset: 1

Views

Author

Sergio Pimentel, Jun 06 2025

Keywords

Comments

a(n) <= 945 for all n. a(n) = 945 for prime numbers > 103.
The possible values appear to be: 1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 63, 105, 135, 189, 315, 945. - Michel Marcus, Jun 12 2025

Examples

			a(5) = 189 because 189 is the smallest odd multiplier k such that 5*k is abundant (i.e., 5*189 = 945 which is abundant).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      for k from 1 by 2 do if numtheory:-sigma(n*k) > 2*n*k then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 09 2025
  • Mathematica
    a[n_] := Module[{k = 1}, While[DivisorSigma[-1, k*n] <= 2, k += 2]; k]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
  • PARI
    a(n) = my(k=1); while (sigma(k*n,-1)<=2, k+=2); k; \\ Michel Marcus, Jun 09 2025
Showing 1-3 of 3 results.