A254578 Number of ordered factorizations into distinct factors.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 13, 1, 3, 3, 5, 1, 13, 1, 5, 3, 3, 3, 13, 1, 3, 3, 13, 1, 13, 1, 5, 5, 3, 1, 21, 1, 5, 3, 5, 1, 13, 3, 13, 3, 3, 1, 29, 1, 3, 5, 11, 3, 13, 1, 5, 3, 13, 1, 29, 1, 3, 5, 5, 3, 13, 1, 21, 3, 3
Offset: 1
Keywords
Examples
a(20)=5 because there are 5 ordered factorizations of 20 into distinct factors: 2*10, 4*5, 5*4, 10*2, 20.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1).
Programs
-
Maple
with(numtheory): b:= proc(n, i, p) option remember; `if`(n<=i, (p+1)!, 0)+add( b(n/d, d-1, p+1), d=select(x->x<=i, divisors(n)minus{1, n})) end: a:= n-> b(n$2, 0): seq(a(n), n=1..100); # Alois P. Heinz, Feb 01 2015
-
Mathematica
f[n_] := f[n] = Level[Table[Map[Prepend[#, d] &, f[n/d]], {d,Rest[Divisors[n]]}], {2}]; f[1] = {{}}; Map[Length,Map[Select[#, Apply[Unequal, #] &] &, Table[f[n], {n, 1, 60}]]]