cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254593 a(n) = (3/n^3) * Sum_{d|n} (-1)^(n+d)*moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

6, 3, 2, 3, 6, 13, 30, 75, 200, 555, 1590, 4693, 14202, 43863, 137882, 440235, 1424958, 4668304, 15459366, 51692379, 174362770, 592815459, 2030105382, 6998177293, 24270836436, 84646997613, 296744311172, 1045283877639, 3698462401026, 13140509079977, 46869358523238, 167781751129899
Offset: 1

Views

Author

Max Alekseyev, Feb 01 2015

Keywords

Programs

  • Mathematica
    a[n_] := 3/n^3 DivisorSum[n, (-1)^(n+#) MoebiusMu[n/#] Binomial[2#, #]&]; Array[a, 40] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    { a(n) = sumdiv(n,d,(-1)^(n+d)*moebius(n/d)*binomial(2*d,d))*3/n^3 }

Formula

a(n) = 6*A131868(n)/n.
For n == 0, 1, or 3 (mod 4), a(n) = A268592(n)/2; for n == 2 (mod 4), a(n) = A268592(n)/2 + A268592(n/2)/8.