A268592
a(n) = (6/n^3) * Sum_{d|n} moebius(n/d)*binomial(2*d,d).
Original entry on oeis.org
12, 3, 4, 6, 12, 25, 60, 150, 400, 1107, 3180, 9386, 28404, 87711, 275764, 880470, 2849916, 9336508, 30918732, 103384758, 348725540, 1185630123, 4060210764, 13996354586, 48541672872, 169293988125, 593488622344, 2090567755278, 7396924802052, 26281018091013, 93738717046476, 335563502259798
Offset: 1
-
a[n_] := (6/n^3)* DivisorSum[n, MoebiusMu[n/#] Binomial[2 #, #] &]; Array[a, 50] (* G. C. Greubel, Dec 15 2017 *)
-
{ a(n) = sumdiv(n, d, moebius(n/d)*binomial(2*d, d))*6/n^3; }
A131868
a(n) = (2*n^2)^(-1)*Sum_{d|n} (-1)^(n+d)*moebius(n/d)*binomial(2*d,d).
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 35, 100, 300, 925, 2915, 9386, 30771, 102347, 344705, 1173960, 4037381, 14004912, 48954659, 172307930, 610269695, 2173656683, 7782070631, 27992709172, 101128485150, 366803656323, 1335349400274, 4877991428982
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Kunal Gupta and Pietro Longhi, Vortices on Cylinders and Warped Exponential Networks, arXiv:2407.08445 [hep-th], 2024. See pp. 41, 49.
- M. Kontsevich, R. Stanley, O. Gorodetsky, et al. A congruence involving binomial coefficients, Mathoverflow, 2015.
- Matjaž Konvalinka and Vasu Tewari, Some natural extensions of the parking space, arXiv:2003.04134 [math.CO], 2020.
- Jerome Malenfant, On the Matrix-Element Expansion of a Circulant Determinant, arXiv:1502.06012 [math.NT], 2015.
- Steven Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, arXiv:1809.05732 [math.AG], 2018.
-
A131868 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do a := a+(-1)^(n+d)*numtheory[mobius](n/d)*binomial(2*d,d) ; od: a/2/n^2 ; end: seq(A131868(n),n=1..30) ; # R. J. Mathar, Oct 24 2007
-
a = {}; For[n = 1, n < 30, n++, b = Divisors[n]; s = 0; For[j = 1, j < Length[b] + 1, j++, s = s + (-1)^(n + b[[j]])*MoebiusMu[n/b[[j]]]* Binomial[2*b[[j]], b[[j]]]]; AppendTo[a, s/(2*n^2)]]; a (* Stefan Steinerberger, Oct 26 2007 *)
a[n_] := 1/(2n^2) DivisorSum[n, (-1)^(n+#) MoebiusMu[n/#] Binomial[2#, #]& ]; Array[a, 30] (* Jean-François Alcover, Dec 18 2015 *)
-
a(n) = (2*n^2)^(-1)*sumdiv(n, d, (-1)^(n+d)*moebius(n/d)*binomial(2*d,d)); \\ Michel Marcus, Dec 06 2018
A268512
Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).
Original entry on oeis.org
1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
Offset: 1
n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
- R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0; also arXiv, arXiv:1602.02632 [math.NT], 2016-2018.
-
a3418[n_] := LCM @@ Range[n];
c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
-
{ A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }
A268618
a(n) = (2/n^3) * Sum_{d|n} moebius(n/d)*binomial(3*d,d).
Original entry on oeis.org
6, 3, 6, 15, 48, 171, 678, 2871, 12858, 60084, 290814, 1448679, 7394106, 38527779, 204365880, 1101000087, 6013054788, 33239486925, 185736687366, 1047961118940, 5964676687668, 34219227608607, 197737647050742, 1150211467134927, 6731334034067058, 39614408616493581, 234342269725331130, 1392933275876114127
Offset: 1
-
a[n_] := (2/n^3)* DivisorSum[n, MoebiusMu[n/#] Binomial[3 #, #] &]; Array[a, 50] (* G. C. Greubel, Dec 15 2017 *)
-
{ a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d))*2/n^3; }
Showing 1-4 of 4 results.
Comments