A254609 Triangle read by rows: T(n,k) = A243757(n)/(A243757(k)*A243757(n-k)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 5, 5
Offset: 0
Examples
The first five terms in A060904 are 1, 1, 1, 1, and 5 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(5,3) = 5*1*1*1*1/((1*1*1)*(1*1))=5. The triangle begins: 1 1, 1 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1 1, 5, 5, 5, 5, 1 1, 1, 5, 5, 5, 1, 1 1, 1, 1, 5, 5, 1, 1, 1 1, 1, 1, 1, 5, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1 1, 1, 1, 5, 5, 1, 1, 1, 5, 5, 1, 1, 1 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Links
- Reinhard Zumkeller, Rows n = 0..124 of triangle, flattened
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Haskell
import Data.List (inits) a254609 n k = a254609_tabl !! n !! k a254609_row n = a254609_tabl !! n a254609_tabl = zipWith (map . div) a243757_list $ zipWith (zipWith (*)) xss $ map reverse xss where xss = tail $ inits a243757_list -- Reinhard Zumkeller, Feb 04 2015
Comments