cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A194459 Number of entries in the n-th row of Pascal's triangle not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 4, 6, 8, 10, 3, 6, 9, 12, 15, 4, 8, 12, 16, 20, 5, 10, 15, 20, 25, 2, 4, 6, 8, 10, 4, 8, 12, 16, 20, 6, 12, 18, 24, 30, 8, 16, 24, 32, 40, 10, 20, 30, 40, 50, 3, 6, 9, 12, 15, 6, 12, 18, 24, 30, 9, 18, 27, 36, 45, 12, 24, 36, 48, 60, 15, 30
Offset: 0

Views

Author

Paul Weisenhorn, Aug 24 2011

Keywords

Comments

Pascal triangles modulo p with p prime have the dimension D = log(p*(p+1)/2)/log(p). [Corrected by Connor Lane, Nov 28 2022]
Also number of ones in row n of triangle A254609. - Reinhard Zumkeller, Feb 04 2015

Examples

			n = 32 = 112|_5: b(32,1) = 2, b(32,2) = 1, thus a(32) = 2^2 * 3^1 = 12.
		

Crossrefs

Cf. A006046, A001316 (for p=2).
Cf. A006048, A006047 (for p=3).
Cf. A194458 (for p=5).

Programs

  • Haskell
    a194459 = sum . map (signum . flip mod 5) . a007318_row
    -- Reinhard Zumkeller, Feb 04 2015
    
  • Maple
    a:= proc(n) local l, m, t;
          m:= n;
          l:= [0$5];
          while m>0 do t:= irem(m, 5, 'm')+1; l[t]:=l[t]+1 od;
          mul(r^l[r], r=2..5)
        end:
    seq(a(n), n=0..100);
  • Mathematica
    Nest[Join[#, 2#, 3#, 4#, 5#]&, {1}, 4] (* Jean-François Alcover, Apr 12 2017, after code by Robert G. Wilson v in A006047 *)
  • Python
    from math import prod
    from sympy.ntheory import digits
    def A194459(n):
        s = digits(n,5)[1:]
        return prod((d+1)**s.count(d) for d in range(1,5)) # Chai Wah Wu, Jul 23 2025

Formula

a(n) = Product_{d=1..4} (d+1)^b(n,d) with b(n,d) = number of digits d in base 5 expansion of n. The formula generalizes to other prime bases p.
a(n) = A194458(n) - A194458(n-1).

Extensions

Edited by Alois P. Heinz, Sep 06 2011

A254730 Triangle read by rows: T(n,k) = A243758(n)/(A243758(k)*A243758(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 1, 1, 6, 6, 6, 6, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 6, 6, 6
Offset: 0

Views

Author

Tom Edgar, Feb 06 2015

Keywords

Comments

These are the generalized binomial coefficients associated with A234959.
The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 6 using the traditional addition algorithm.
If T(n,k) != 0 mod 6, then n dominates k in base 6.

Examples

			The first six terms in A234959 are 1, 1, 1, 1, 1 and 6 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(6,3) = 6*1*1*1*1*1/((1*1*1)*(1*1*1))=6.
The triangle begins:
1
1, 1
1, 1, 1
1, 1, 1, 1
1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1
1, 6, 6, 6, 6, 6, 1
1, 1, 6, 6, 6, 6, 1, 1
1, 1, 1, 6, 6, 6, 1, 1, 1
1, 1, 1, 1, 6, 6, 1, 1, 1, 1
1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 6, 6, 6, 6, 6, 1, 6, 6, 6, 6, 6, 1
1, 1, 6, 6, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1
1, 1, 1, 6, 6, 6, 1, 1, 1, 6, 6, 6, 1, 1, 1
1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1
1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a254730 n k = a254730_tabl !! n !! k
    a254730_row n = a254730_tabl !! n
    a254730_tabl = zipWith (map . div)
       a243758_list $ zipWith (zipWith (*)) xss $ map reverse xss
       where xss = tail $ inits a243758_list
    -- Reinhard Zumkeller, Feb 09 2015
  • Sage
    P=[0]+[6^valuation(i,6) for i in [1..100]]
    [m for sublist in [[mul(P[1:n+1])/(mul(P[1:k+1])*mul(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] for m in sublist]
    

Formula

T(n,k) = A243758(n)/(A243758(k)*A243758(n-k)).
T(n,k) = Product_{i=1..n} A234959(i)/(Product_{i=1..k} A234959(i)*Product_{i=1..n-k} A234959(i)).
T(n,k) = A234959(n)/n*(k/A234959(k)*T(n-1,k-1)+(n-k)/A234959(n-k)*T(n-1,k)).
Showing 1-2 of 2 results.