cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254619 a(n) = 4^n*(2*n + 1)!/n!.

Original entry on oeis.org

1, 24, 960, 53760, 3870720, 340623360, 35424829440, 4250979532800, 578133216460800, 87876248902041600, 14763209815542988800, 2716430606059909939200, 543286121211981987840000, 117349802181788109373440000
Offset: 0

Views

Author

Peter Bala, Feb 03 2015

Keywords

Crossrefs

Programs

  • Maple
    seq(4^n*(2*n + 1)!/n!, n = 0..13);
  • Mathematica
    Table[4^n (2n+1)!/n!,{n,0,20}] (* Harvey P. Dale, Oct 02 2021 *)

Formula

E.g.f.: 1/(1 - 16*x)^(3/2) = 1 + 24*x + 960*x^2/2! + 53760*x^3/3! + ....
Recurrence equation: a(n) = 8*(2*n + 1)*a(n-1) with a(0) = 1.
2nd order recurrence equation: a(n) = (20*n + 6)*a(n-1) - 16*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 24.
Define a sequence b(n) := a(n)*sum {k = 0..n} 1/((2*k + 1)*4^k) beginning [1, 26, 1052, 59032, 4251984, 374204832, 38917967808, ...]. It is not difficult to check that b(n) also satisfies the previous 2nd order recurrence equation (and so is an integer sequence). From this observation we can obtain the continued fraction expansion
log(3) = Sum {k >= 0} 1/((2*k + 1)*4^k) = 1 + 2/(24 - 16*3^2/(46 - 16*5^2/(66 - ... - 16*(2*n - 1)^2/((20*n + 6) - ... )))).
Alternative 2nd order recurrence equation: a(n) = (12*n + 10)*a(n-1) + 16*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 24.
Define now a sequence c(n) := a(n)*sum {k = 0..n} (-1)^k/((2*k + 1)*4^k) beginning [1, 22, 892, 49832, 3589584, 315853152, 32849393088, ...], which, along with a(n), satisfies the alternative 2nd order recurrence equation. From this observation we find the continued fraction expansion 2*arctan(1/2) = Sum {k >= 0} (-1)^k/((2*k + 1)*4^k) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ... )))). Cf. A254381 and A254620.