A254645 Fourth partial sums of sixth powers (A001014).
1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
Offset: 1
Examples
First differences: 1, 63, 665, 3367, 11529, 31031, ... (A022522) -------------------------------------------------------------------------- The sixth powers: 1, 64, 729, 4096, 15625, 46656, ... (A001014) -------------------------------------------------------------------------- First partial sums: 1, 65, 794, 4890, 20515, 67171, ... (A000540) Second partial sums: 1, 66, 860, 5750, 26265, 93436, ... (A101093) Third partial sums: 1, 67, 927, 6677, 32942, 126378, ... (A101099) Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ... (this sequence)
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([1..30], n-> Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
-
Magma
[Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
Maple
seq(binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
-
Mathematica
Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x] Nest[Accumulate,Range[30]^6,4] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,68,995,7672,40614,166992,571626,1701480,4534959,11050468,24997973},30] (* Harvey P. Dale, Dec 27 2015 *)
-
PARI
vector(30, n, binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
-
Sage
[binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
Formula
G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.