A254646 Fourth partial sums of seventh powers (A001015).
1, 132, 2709, 26432, 168126, 804552, 3136014, 10459968, 30856839, 82407052, 202678203, 465069696, 1005729452, 2066218896, 4058958828, 7664805504, 13974953853, 24692818836, 42415687153, 71020845504, 116186669130, 186085891160, 292296070170, 450981236160, 684408934755
Offset: 1
Examples
First differences: 1, 127, 2059, 14197, 61741, ... (A022523) ---------------------------------------------------------------------- The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015) ---------------------------------------------------------------------- First partial sums: 1, 129, 2316, 18700, 96825, ... (A000541) Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212) Third partial sums: 1, 131, 2577, 23723, 141694, ... (A254641) Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (this sequence)
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Programs
-
GAP
List([1..30], n-> Binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198); # G. C. Greubel, Aug 28 2019
-
Magma
[Binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
Maple
seq(binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198, n=1..30); # G. C. Greubel, Aug 28 2019
-
Mathematica
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (48 - 100 n - 89 n^2 + 160 n^3 + 140 n^4 + 36 n^5 + 3 n^6)/23760, {n, 20}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^7]]]] (* or *) CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(- 1 + x)^12, {x, 0, 19}], x]
-
PARI
a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(48-100*n-89*n^2+160*n^3+140*n^4 +36*n^5+3*n^6)/23760 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[binomial(n+4,5)*(3*(n+2)^6 -40*(n+2)^4 +151*(n+2)^2 -108)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
Formula
G.f.: x*(1 +120*x +1191*x^2 +2416*x^3 +1191*x^4 +120*x^5 +x^6)/(1-x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(48 - 100*n - 89*n^2 + 160*n^3 + 140*n^4 + 36*n^5 + 3*n^6)/23760.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^7.