cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A254647 Fourth partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n,20}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)
    CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x,0,19}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +247*x +4293*x^2 +15619*x^3 +15619*x^4 +4293*x^5 +247*x^6 +x^7)/(1-x)^13.
a(n) = n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1 +4*n +n^2)*(21 -48*n +20*n^2 + 16*n^3 +2*n^4)/23760.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^8.

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254645 Fourth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 63, 665, 3367, 11529,  31031, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64, 729, 4096, 15625,  46656, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65, 794, 4890, 20515,  67171, ...  (A000540)
Second partial sums: 1, 66, 860, 5750, 26265,  93436, ...  (A101093)
Third partial sums:  1, 67, 927, 6677, 32942, 126378, ...  (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ...  (this sequence)
		

Crossrefs

Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
    CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
    Nest[Accumulate,Range[30]^6,4] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,68,995,7672,40614,166992,571626,1701480,4534959,11050468,24997973},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    vector(30, n, binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.

A255177 Second differences of seventh powers (A001015).

Original entry on oeis.org

1, 126, 1932, 12138, 47544, 140070, 341796, 730002, 1412208, 2531214, 4270140, 6857466, 10572072, 15748278, 22780884, 32130210, 44327136, 59978142, 79770348, 104476554, 134960280, 172180806, 217198212, 271178418
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 126, 1932, 12138,  47544, ... (this sequence)
First differences:   1, 127, 2060, 14324,  63801, ... (A152726)
----------------------------------------------------------------------
The seventh powers:  1, 128, 2187, 16384,  78125, ... (A001015)
----------------------------------------------------------------------
First partial sums:  1, 129, 2316, 18700,  96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums:  1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (A254646)
Fifth partial sums:  1, 133, 2842, 29274, 197400, ... (A254684)
		

Crossrefs

Programs

  • Magma
    [1] cat [14*(-1+n)*(9-22*n+23*n^2-12*n^3+3*n^4): n in [2..30]]; // Vincenzo Librandi, Mar 12 2015
    
  • Mathematica
    Join[{1}, Table[14 n (3 n^4 + 5 n^2 + 1), {n, 1, 30}], {n, 0, 24}] (* or *)
    CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(1 - x)^6, {x, 0, 22}], x]
  • Python
    def A255177(n): return 14*n*(n**2*(3*n**2 + 5) + 1) if n else 1 # Chai Wah Wu, Oct 07 2024

Formula

G.f.: (1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1 - x)^6.
a(n) = 14*n*(3*n^4 + 5*n^2 + 1) for n>0, a(0)=1.
a(n) = A022523(n)-A022523(n-1). - R. J. Mathar, Jul 16 2015

Extensions

Edited by Bruno Berselli, Mar 19 2015

A254684 Fifth partial sums of seventh powers (A001015).

Original entry on oeis.org

1, 133, 2842, 29274, 197400, 1001952, 4137966, 14597934, 45454773, 127861825, 330540028, 795609724, 1801339176, 3867558072, 7926516900, 15591322404, 29566276257, 54259095093, 96674782246, 167695627750, 283882296880
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			First differences:   1, 127, 2060, 14324,  63801, ...  (A152726)
----------------------------------------------------------------------
The seventh powers:  1, 128, 2187, 16384,  78125, ...  (A001015)
----------------------------------------------------------------------
First partial sums:  1, 129, 2316, 18700,  96825, ...  (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ...  (A250212)
Third partial sums:  1, 131, 2577, 23723, 141694, ...  (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ...  (A254646)
Fifth partial sums:  1, 133, 2842, 29274, 197400, ...  (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 3 + 5 n + n^2) (- 2 + 5 n + n^2) (5 + 5 n + n^2)/95040, {n,21}] (* or *)
    CoefficientList[Series[(- 1 - 120 x - 1191 x^2 - 2416 x^3 - 1191 x^4 - 120 x^5 - x^6)/(-1 + x)^13, {x,0,20}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-3+5*n+n^2)*(-2+5*n+n^2)*(5+5*n+n^2)/95040 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (- x - 120*x^2 - 1191*x^3 - 2416*x^4 - 1191*x^5 - 120*x^6 - x^7)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(-3 + 5*n + n^2)*(-2 + 5*n + n^2)*(5 + 5*n + n^2)/95040.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^7.
Showing 1-5 of 5 results.