cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254678 Primes p with the property that there are four consecutive integers less than p whose product is 1 mod p.

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 73, 89, 97, 103, 127, 137, 151, 167, 199, 223, 233, 239, 241, 257, 271, 281, 311, 313, 353, 359, 367, 383, 409, 431, 433, 439, 449, 479, 487, 503, 521, 577, 593, 601, 607, 647, 673, 719, 727, 743, 751, 761, 769, 839, 857, 881, 887, 911, 929, 937, 953, 967, 977, 983
Offset: 1

Views

Author

Marian Kraus, Apr 02 2015

Keywords

Examples

			p=7: 2*3*4*5=120 == 1 mod 7;
p=17: 2*3*4*5=120 == 1 mod 17 AND 12*13*14*15=32760 == 1 mod 17; for p=13: no triple == 1 mod 13;
p=23: 5*6*7*8 == 1 mod 23 AND 15*16*17*18== 1 mod 23 AND 19*20*21*22 == 1 mod 23; and so on. For the number of quadruples for a prime, see A256580.
		

Crossrefs

Programs

  • Mathematica
    fsiQ[n_]:=AnyTrue[Times@@@Partition[Range[n-1],4,1],Mod[#,n]==1&]; Select[ Prime[Range[200]],fsiQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2019 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (sum(x=1, p-4, ((x*(x+1)*(x+2)*(x+3)) % p) == 1) > 0, print1(p, ", "))); \\ Michel Marcus, Apr 03 2015
  • R
    library(numbers)
    IP <- vector()
    t <- vector()
    S <- vector()
    IP <- c(Primes(1000))
    for (j in 1:(length(IP))){
       for (i in 2:(IP[j]-4)){
           t[i-1] <- as.vector(mod((i*(i+1)*(i+2)*(i+3)),IP[j]))
           Z[j] <- sum(which(t==1))
           S[j] <- length(which(t==1))
       }
    }
    IP[S!=0]
    #Carefully increase Primes(1000). It takes several hours for 100000.
    

Formula

x*(x+1)*(x+2)*(x+3) == 1 mod p, p is prime, 1 <= x <= p-4.